

NN-X-X-S17, 225 – 3000 MHz, 1 Watt¹, Tunable Bandpass Filters

Typical Applications

- Applications where small size and high performance are required
- Military Manpack, Vehicular and Airborne Radios
- Radar
- SATCOM
- Test and Measurement Equipment
- Industrial and Medical Equipment

Features

- +30 dBm in-band power handling¹
- +42 dBm IIP3 typical
- 10 µs typical tune time
- 15 dBc typical selectivity at $f_c \pm 10\%^1$
- 4 dB typical insertion loss²
- +3.0 V @ 3.5 mA typical
- 0.78" x 0.47" x 0.3" (20 mm x 12 mm x 7.62 mm)
- Custom bandwidths and tuning ranges are available in this package from 225 to 3000 MHz.

The **NANO-POLE**[®] is designed for optimal size, DC consumption, RF power handling, insertion loss, signal purity and linearity. The **NANO-POLE**[®] provides a minimum center frequency step size of 10 MHz typically but can be modified based upon request. The **NANO-POLE**[®] requires a +3.0 V supply that typically draws 5 mA when not hopping. The supply voltage should be adequately filtered as noise present on this pin will influence the RF signal purity. The **NANO-POLE**[®] uses SPI control interface.

¹ For BW3dB filters ≥ 7%. +27 dBm for 5% filters. +23 dBm for 3% filters. 5%, 3% filters provide more selectivity and have higher insertion loss. See sections 4.4 and 0.

[©] Pole/Zero 2019

1.0 Ordering Information

Table 1. Ex	amp	ole Ordering Options				
Series		Frequency Range (MHz)		% Bandwidth (3 dB)		Package
		225-520		5		
		1000-1500		5		
		1500-2000		5		
NN	-	1500-2000	-	7	-	S17
		2000-2500		5		
		2500-3000		5		

Note: Options may be limited to particular frequency bands and/or configurations. Consult Pole/Zero for your application. Performance shown is indicative of 1.5:1 Tuning Ratio unless otherwise specified. Example product number: NN-1000-1500-5-S17

2.0 Block Diagram

3.0 Pinout and Functional Information

3.1 Pinout

3.2 Pin Description

Table 2	Pin	Functions	and	Descriptions
---------	-----	------------------	-----	--------------

Pin Number	Label	Description
17	V _{CC}	Supply Voltage Input. 3.0 VDC Recommended.
5, 10, 12, 13, 15, 16	GND	GND
1, 2, 6, 8, 9	NC	No Connect. Shorting these pins may affect the performance and functionality of the filter. Please leave these pins floating.
11, 14	RF I/O	RF Signal Input or Output. Pin 14 is the input during factory alignment.
4	DATA	Serial data is applied for transferring tune commands to the device at the rising edge of CLK. The filter accepts input word lengths of 8 bits.
3	CLK	Serial data is latched on the rising edge of CLK.
7	CS/STB	SPI Chip Select. When $\overline{CS}/\overline{STB}$ is taken low, the control circuitry wakes up and CLK is enabled for shifting bits on DATA into the filter. When $\overline{CS}/\overline{STB}$ is taken high, the specified tune command is executed.

4.0 Specifications

4.1 Absolute Maximum Ratings² Voltages are referenced to GND (ground = 0V). Operating at room temperature (unless otherwise noted).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{cc}	Supply voltage	-	0	3.3	V
VI	Input voltage	On all digital interface input pins	-0.3	V _{cc}	V
		3% BW		+25	
PINBAND	In-band RF input power level.	5% BW	-	+30	dBm
		7% BW		+32	
POUTBAND	Out-of-band RF input power level	-	-	+33	dBm
T _{RATE}	Maximum tune rate (frequency hopping)	-	-	20	kHz

4.2 Handling Ratings

Symbol	Parameter	Conditions	Min	Max	Unit
Τ _s	Storage temperature	-	-40	85	°C

4.3 Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Nom	Max	Unit
V _{cc}	Supply voltage	-	2.7	3.0	3.1	V
		3% BW		+23		
P _{IN}	Maximum RF input power for linear operation	5% BW	-	+27	-	dBm
		7% BW		+30		
T _A	Ambient operating temperature	-	-40	-	+85	°C

© Pole/Zero 2019

² Maximum operating conditions before damage occurs. Performance is not specified under these conditions.

4.4 Electrical Characteristics

All specifications at T_{A} = 23 °C, V_{cc} = 3.0 V, unless otherwise noted.

Symbol	Parameter	Conditions		Min	Nom	Мах	Unit	
V _{cc}	Supply voltage		-	+2.7	+3.0	+3.1	V	
I _{CC_STATIC}	V _{CC} current consumption, statically tuned	At non	ninal V _{CC} voltage	-	5.0	30 ³	mA	
I _{CC_HOP}	V _{CC} current consumption, hopping	Nominal	/ _{CC} , hopping at rate	-	7.0	32	mA	
V _{IH}	Digital high level input voltage	On all di	gital interface input pins	0.7 * Vcc	-	3.1	V	
V _{IL}	Digital low level input voltage	On all dig	ital interface output pins	0	-	0.3 * Vcc	V	
I _{IH} /I _{IL}	Digital Interface pin input logic current		-	-15	-	15	uA	
F _{RANGE}	Tunable frequency range (Multiple Bands)		-	225	-	3000	MHz	
Zo	Input/output impedance		-	-	50	-	Ω	
VSWR	Voltage Standing Wave Ratio		-	-	1.5:1	2.2:1	-	
RL	Return loss		At 50 Ω	8.5	14	-	dB	
			225 – 520 MHz		6.5	9.0		
	Insertion Loss		1.0 – 1.5 GHz		5.5	9.0		
		5% BW	1.5 – 2.0 GHz		5.2	8.0	dB	
IL			2.0 – 2.5 GHz		5.2	8.0		
			2.5 – 3.0 GHz		5.0	6.5		
		7% BW	1.5 – 2.0 GHz		3.2	5.0		
		3% BW	1.2 – 1.4 GHz		8.0	10.0		
BW	Bandwidth (3 dB)		-	3	-	12	%	
			3% BW	-	24			
SEL	Selectivity 10% removed from	5% BW	225 – 520 MHz	14	18	_	dBc	
02210%	the center frequency	070 DW	1.0 – 3.0 GHz	18	20		abo	
			7% BW	12	15			
SELULTIMATE	Ultimate selectivity	f_0 ·	+ 50% to 2 f _o	-	30	-	dBc	
IIP3	Input third order intermodulation intercept point		-	-	+42	-	dBm	
P _{Spurious}	Spurious Level	15 dE	3 Noise Source Reference	-	-120	-	dBm	
		22	5 - 520 MHz		IL+4			
		1	.0-1.5 GHz		IL+4			
NF	Noise figure	1	.5-2.0 GHz	-	IL+4	-	dB	
		2.0 – 2.5 GHz			IL+3			
		2.	5 – 3.0 GHz		IL+2			
PN	Phase Noise	Residu	al @ f ₀ + 10 kHz	-	-145	-	dBc/Hz	
T _{TUNE}	Tune time		-	-	10	20	μs	
F _{DRIFT}	Center frequency drift over temperature	-4(0°C to +85°C	-	-60	-	ppm/°C	

³ Vcc current increases with increasing temperature. Typically 18 mA when tuned, 30 mA upon start-up at +85°C.

[©] Pole/Zero 2019

Figure 3. 225 MHz Noise Figure @ +23°C.

Figure 4. 225 MHz Spurious @ +23°C.

Figure 6. Typical Spurious Performance: NN-1000-1500-5-S17, Fc = 1000 MHz.

Typical Characteristics

Figure 7. 5% BW, Small Signal, NN-225-520-5-S17 Measured Data. Single Filter.

Figure 9. 7% BW, Small Signal, NN-1500-2000-7-S17 Measured Data. Single Filter.

Figure 10. 5% BW, Small Signal, NN-2500-3000-5-S17 Measured Data. Single Filter.

4.5 Timing Requirements

4.5.1 SPI Interface Timing

The SPI tune command interface is a standard SPI interface with Mode = 0 (CPOL = 0, CPHA = 0). There are 8 data bits. The interface receives data MSB first. If a bit is not used in the tune position, leave it set to logic low, '0'.

Table 3. SPI Timing Characteristics $V_{CC} = 3.0 \text{ V} \text{ +/-5\%}, \text{ GND} = 0 \text{ V}.$

Parameter	Parameter	Min.	Max.	Unit
T _{WAKE}	Wakeup Time – The amount of time from $\overline{\text{CS}}/\overline{\text{STB}}$ transitioning low until data can be clocked.	-	6.5	μs
T _{CSS}	$\overline{CS}/\overline{STB}$ Setup Time – The amount of time needed from when $\overline{CS}/\overline{STB}$ transitions low until the first rising edge of CLK.	6.8	-	μs
Tıs	MOSI Setup CLK – The amount of time data needs to be valid on MOSI before the rising edge of CLK.	10	-	ns
Тін	MOSI Hold CLK – The amount of time data needs to be valid on MOSI after the rising edge of CLK.	40	-	ns
T _{CLK}	CLK Period	143	-	ns
T _{SCW}	CLK Duty Cycle	<u>Т_{СLК} 2</u>	-	ns
T _{CLKF}	CLK Fall Time (not shown)	-	1.6	μs
T _{CLKR}	CLK Rise Time (not shown)	-	1.6	μs
T _{CSH}	$\overline{CS}/\overline{STB}$ Hold Time – The amount of time $\overline{CS}/\overline{STB}$ needs to remain low after the last falling edge of CLK.	50	-	ns
T _{NEW}	New Command Delay (not shown) – The amount of time needed to wait before sending a new tune command (next falling edge of $\overline{CS}/\overline{STB}$).	50	-	μs
T _{TUNE}	Tune Time – Please refer to section on tune time.	-	15	μs

5.0 Functional Description

5.1 Tune Commands

The tune command is a one-byte load tune word.

Table 4. Tune Command Properties

Symbol	Filter Range	Value (MHz)	Description				
	-	-					
	-	-					
fmin	225-520	225	Minimum Tunable Frequency, f_{MW} is the absolute minimum				
	1000-1500	1000	frequency that the filter is capable of tuning to for the				
	1500-2000	1500	respective band.				
	2000-2500	2000					
	2500-3000	2500					
	-	-	Maximum Tunable Frequency f is the absolute maximum				
	-	-	frequency, that the filter is easily of tuning to Sonding tune				
	225-520	520	nequency that the filter is capable of turning to. Sending tune				
f	1000-1500	1500	commanus greater than the maximum tunable nequency will result in an invalid tune condition. The frequency response of				
JMAX	1500-2000	2000	an invalid tune is unknown. Normal frequency response of return on the next valid tune command. Varies depending on				
	2000-2500	2500					
	2500-3000	3000	the band				
			the band.				
	-	-					
	-	-					
	225-520	4.0	Tune step size. f_{STEP} is the minimum spacing between				
famo	1000-1500	10.0					
JSTEP	1500-2000	10.0	adjacent tune commands.				
	2000-2500	10.0					
	2500-3000	10.0					
fcoм	All	$round\left(\frac{(f_{DESIRED} - f_{MIN})}{f_{STEP}}\right)$	Commanded Frequency. f_{COM} is the commanded frequency that is sent over the SPI or parallel tune interface. The command can be calculated by subtracting f_{MIN} from the desired frequency for the particular band, dividing the result by the f_{STEP} of that band, and then rounding to the nearest integer command. The formula is used to select the closest possible frequency to the desired tune word. If the next lowest tune word is desired, replace the round operation with "floor" and if the next highest tune word is desired replace the round operation with "ceil".				

Table 5. Tune Command Format											
Filte	er Model					Tune Wor	d Bit Wei	ght (MH	z)		
Dort Sorioo	f _{MIN}	f _{MAX}		(MSB)							(LSB)
Part Selles	(MHz)	(MHz)		7	6	5	4	3	2	1	0
225-520	225	520		0	256	128	64	32	16	8	4.0
1000-1500	1000	1500		0	0	320	160	80	40	20	10
1500-2000	1500	2000		0	0	320	160	80	40	20	10
2000-2500	2000	2500		0	0	320	160	80	40	20	10
2500-3000	2500	3000		0	0	320	160	80	40	20	10

6.0 Detailed Description

6.1 Example Tune Commands Table 6. Example Tune Commands

f _{DESIRED} (MHz)	<i>f_{MIN}</i> of Filter (MHz)	<i>f_{STEP}</i> of Filter (MHz)	f _{сом} Calculation (Decimal)	f _{сом} (Decimal)	Tune Command (Hex)				
	NN-225-520-X-S17 Examples								
225	225	4.0	$round\left(\frac{(225-225)}{4}\right)$	0	00				
316.2	225	4.0	$round\left(\frac{(316.2 - 225)}{4}\right)$	23	17				
520	225	4.0	$round\left(\frac{(520-225)}{4}\right)$	74	4A				
NN-1000-1500-X-S17 Examples									
1000	1000	10	$round\left(\frac{(1000 - 1000)}{10}\right)$	0	00				
1260	1000	10	$round\left(\frac{(1260 - 1000)}{10}\right)$	26	1A				
1500	1000	10	$round\left(\frac{(1500 - 1000)}{10}\right)$	50	32				
		NN-1500	-2000-X-S17 Examples						
1500	1500	10	$round\left(\frac{(1500 - 1500)}{10}\right)$	0	00				
1828	1500	10	$round\left(\frac{(1828-1500)}{10}\right)$	33	21				
2000	1500	10	$round\left(\frac{(2000 - 1500)}{10}\right)$	50	32				

7.0 Tune Time

Tune times include internal processing of the tune command data and the 90% settled RF amplitude response time of the filter. This time excludes the time required to load the tune command into the filter. Low level signal measurements were utilized to show the receive tune time that can be expected.

In addition, RF power in excess of 0 dBm is considered to be "hot switching" of the filter. Tuning operation of the filter into levels greater than 0 dBm cannot be done reliably. It is recommended that RF input power is less than 0 dBm during a tune event.

8.0 Application Information

8.1 Application Circuits

9.0 Package Information

9.1 Package Detail

Figure 13. Package Detail

4- MATERIAL: R04350 / FR4 COPPER CLAD EPOXY GLASS. HIGH TEMP FR4, UL94V-0, PER IPC-4101/24 CLASS B. TOTAL FINISHED THICKNESS .055 +/- .005 (PLATED COPER TO PLATED COPER)

TOP SIDE ETCH
$$\rightarrow$$

GND PLANE 2 \rightarrow
CONTRACT CONTRACTACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT

10.0 Mounting Instructions

10.1 Solder Reflow Profile

10.2 Temperature Options

Option	PWB Solder Mask Color	Reflowable?	Other Designators
High Temperature	Black	Yes	-
Standard Temperature	Green	No	-

10.3 Temperature Guidelines

10.3.1 Place the unit on the recommended layout pattern specified in this document in section 9.2. The parameters below describe the reflow profiles for ROHS-compliant and non-ROHS-compliant solder pastes. All temperatures are referenced to the PCB surface of the unit.

	1 1		
Parameter	Description	SAC305 Solder Paste	Sn63Pb37 Solder Paste
Ramp-up	Average ramp rate from T_{S_MAX} to	3 °C/second average	3 °C/second average
	Τ _Ρ	maximum	maximum
T _{SMIN}	Preheat Peak Minimum	175 °C	150 °C
T _{SMAX}	Preheat Peak Minimum	200 °C	175 °C
Τ _Ρ	Maximum Reflow Temperature	230 °C	225 °C
Ts	Time between T_{S_MAX} and T_{S_MIN}	75 – 120 seconds	45 – 90 seconds
TL	Solder melting point	217 °C – 218 °C	183 °C
T _A	Time above liquidus (tal)	60 – 120 seconds	45 – 90 seconds
Τ _T	Time within 5 °C of T_P	20 – 30 seconds	10 – 30 seconds
Ramp-Down	Ramp-down rate	6 °C per second maximum	6 °C per second maximum
Time to Peak	From 25 °C to peak temperature	270 seconds maximum	270 seconds maximum

10.4 Other Restrictions

- 10.4.1 Pole/Zero recommends a no-clean Sn63Pb37 solder paste.
- 10.4.2 Do not clean the product after reflow process.
- 10.4.3 Only subject the unit to one SMT reflow process.
- 10.4.4 Stencil thickness recommendation is between 0.005" and 0.008".
- 10.4.5 Bake out process per J-STD-033B Package Thickness > 2.0 mm and ≤ 4.5 mm.

11.0 Safety Notes

12.0 Legal Information

12.1 Disclaimers

Limited warranty and liability – Information in this document is believed to be accurate and reliable. Pole/Zero and its suppliers disclaim all warranties, whether express or implied, including implied warranties of merchantability, fitness for a particular purpose, and non-infringement. The entire risk arising out of use or performance of this information remains with Licensee. Pole/Zero and its suppliers do not make any representations regarding the results of the use of the information in this document.

To the maximum extent permitted by applicable law, in no event will Pole/Zero or its directors, employees, distributors, licensors, suppliers, agents or resellers or suppliers ("Pole/Zero parties") be liable for any indirect, special, incidental, consequential, or exemplary damages, even if such party has been advised of the possibility thereof. The Pole/Zero parties' entire liability will not exceed the sum of the replacement of defective product or provision of a reasonably similar product, at Pole/Zero's discretion. Some jurisdictions do not allow the exclusion or limitation of incidental, consequential or special damages, so this exclusion and limitation may not be applicable to Licensee. The Pole/Zero Parties will not be liable for any claims or damages arising out of content provided by Licensee.

12.2 Right to Make Changes

Pole/Zero Corporation reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

13.0 Learn More

For additional information, please visit http://www.dovermpg.com/polezero

14.0 Contact and Support

Pole/Zero Corporate Office 5558 Union Centre Drive West Chester, OH 45069, USA 513-870-9060 (Phone) 513-870-9064 (Fax)