

Pole/Zero® Product Catalog

Advanced Cosite Communication Solutions for your Platform

	Table o	of Contents	
POLE/ZERO [®] HISTORY	1	ICE3002	73
FILTER SELECTION	2	ICE3003	74
TUNABLE BANDPASS FILTERS		ICE3005	75
NANO-POLE [®] Series	6	ICE3006 ICE3007	76 77
MINI-POLE [®] Series	10	ICE3007	78
MINI-SMT [™] Series	16		
MAXI-POLE [®] Series	18	SELECTIVE FILTERING - ULTRA HIGH PERFORMANCE ICE4003	: 79
MAXI/3 Series	22	ICE4003	79 80
MAXI/4R Series	25	ICE4004	81
POWER-POLE® Series	28	ICE5200 TM	82-83
MEGA-POLE [®] Series	32	1020200	02-00
EXTENDED RANGE FILTERS		ELECTRONIC WARFARE SOLUTIONS	
HF-ERF [™] Series	34	Introduction	84
NANO-ERF® Series	38	MAXI/4R NOTCH Series	85
MINI-ERF [®] (G2) Series	41 44	Concellation	
MINI-ERF [®] (S11) Series MINI/3-ERF	44 46	Cancellation Multichannel Interference Canceller	86
ERF-5W [™] Series	40	ICE2004/Referenceless Canceller	87
	10		07
TUNABLE NOTCH FILTERS MINI-POLE® NOTCH Series	50	RF DISTRIBUTION	
MAXI-POLE® NOTCH Series	52	AIS Splitter	88
MAXI/4R NOTCH Series	54	Low Noise/High Dynamic Range Amplifiers	
POWER-POLE [®] NOTCH Series	56	SATCOM LNA	89
PRE/POST-SELECTOR SERIES		SATCOM Limiter Amplifier	89
PSEL1003	58	Low Noise Amplifier / Triplexer	
	00	ICELT1 [™]	90-91
INTEGRATED COSITE EQUIPMENT (ICE)	CO		
Introduction	60	Cross Band Cosite Filtering	92
SELECTIVE FILTERING - MODEST PERFORMAN		VHF & UHF Tunable Multicouplers	94
MEGA-POLE® Series	64	GLOSSARY	95
ICE1006 ICE2002	66 68		•••
ICE2002 ICE3009	68 70	REFERENCE MATERIAL	96
	70	REPRESENTATIVES	
SELECTIVE FILTERING - HIGH PERFORMANCE	70	US Representatives	100
ICE3001	72	International Representatives	100

Today's crowded communications bands and closely located receivers and transmitters operated simultaneously (SIMOP) require RF system designers to pay increasing attention to their equipment's generation and rejection of signals and noise. The receiver must operate in the presence of large interfering signals on adjacent channels while the transmitter noise and spurious signals can artificially raise the system noise floor for collocated (cosite) receivers with the end result of system desensitization and diminished communications range.

Pole/Zero® offers a full suite of products for these high-interference environments. For the equipment designer, Pole/Zero[®] offers multiple families of rapidly tunable notch filters, bandpass filters and pre/post-selection filters for incorporation into our customers' equipment. For the system engineer with the challenge of enhancing a modern transceiver's performance in a cosite environment, Pole/Zero® offers our Integrated Cosite Equipment (ICE) which directly interfaces with the transceiver to provide the required cosite interference mitigation - even under fast frequency hopping applications.

Pole/Zero[®] offers a Cosite Analysis and Integration service to our customers to determine the level of cosite interference mitigation required for a specific communications application. The goal of this analysis is to determine the level of mitigation required to meet the system's concept of operations and ensure full communications range at minimum cost.

Pole/Zero® History

Pole/Zero® designs and manufactures a comprehensive suite of RF interference mitigation products including tunable filters, Integrated Cosite Equipment (ICE), Low Noise Amplifiers (LNA), cosite power amplifiers and other products that are ideal for solving communication problems caused by various types of RF interference. These interfering sources can include self-interference due to collocation of transmitters and receivers (known as cosite interference), intentional jammers, broadband noise, spectral splatter and spurious transmit signals, rusty bolt effects or any number of other sources. Our approach to business and our ability to cost-effectively solve the most difficult interference problems has made us one of the fastest growing companies in our field.

The company was founded in 1989 with the belief that the military and commercial RF markets were changing Although military budgets were shrinking, the role and the requirements of the military were not. In fact, one may argue that the role of the conventional military was expanding with the global police force and peacekeeping actions being taken. At the same time, real battlefield situations demonstrated that commercial equipment can provide the sophistication and reliability required in a military environment.

Using current state-of-the-art technology we focused on the technological advances of the last couple of decades and applied it to solid-state tunable filters. The result was a leap forward in miniaturization and standardization, permitting a totally self-contained single structure with improved production capability and reduced cost. In addition to these filters, we have developed other building blocks such as low noise amplifiers, cosite power amplifiers, solid-state switches, mixers and synthesizers that now make up a catalog of "off-the-shelf" building blocks. These building block modules are available both as stand-alone modules and also in the systems that we design and manufacture. These products share a common attribute in the support of very high dynamic range communications.

In 1994 Pole/Zero[®] branched into the Integrated Cosite Equipment (ICE) field with the development of both an airborne and shipboard filter/amplifier cascade product. ICE integrates elements of our standard product line to achieve enhanced performance beyond that achievable with our basic products. Both of these ICE units are still in production. Further, Pole/Zero[®] has significantly expanded the breadth of ICE products, providing our customers the ability to select optimum cost-effective solutions for their interference mitigation needs. Many of our products are purchased as commercial items, while other customers require modification to the existing products to meet their needs. In both cases, Pole/Zero® provides low risk, cost-effective solutions. Our products can be found in the harshest RF environments on C4ISR (command. control, communications, computers, intelligence, surveillance and reconnaissance) platforms and tactical applications.

Today, Pole/Zero® is delivering hardware to customers around the world for a variety of applications. For the military, our equipment is flying on airborne command posts and jet fighters and is fielded in both ground-fixed and ground-mobile systems. The same hardware is being used in commercial applications from radio telescopes to wireless office communications and from industrial inspection equipment to MRI machines. Applications for our filters range from stand-alone units in a test environment to units embedded in the design of high performance communication equipment.

As we continue to grow in number of employees and yearly sales, we have maintained our focus on supplying readily available, digitally tuned hopping filter modules and components with wide dynamic range performance to provide new flexibility to the RF system designer. Additionally, Pole/Zero® has increased its focus on providing quality products to our customers by instituting the following quality policy: "Pole/Zero® is dedicated to providing defect-free products on time to internal and external customers. Customer satisfaction, quality and continuous improvement are the personal responsibility of each employee." Building on this policy, Pole/Zero® has established and complies with many processes focused on improving performance throughout the company. As a result, Pole/Zero® has maintained third-party certification of our conformance to the ISO9001:2008 standard with AS9100:2009, Revision C, since October 2005.

All products are manufactured and thoroughly tested in our West Chester. Ohio facility, which is fully equipped with modern computer controlled testing and manufacturing equipment.

Pole/Zero[®] is dedicated to innovation, quality and absolute customer satisfaction.

Selecting the right filter for your application.

Tuning Components

Changing the resonant frequency of a tuned circuit can be done by varying either its inductance or capacitance. Because of their smaller size and higher Q, capacitors are generally chosen as the tuning element. One way to accomplish this is by allowing the capacitance to be a bank of switched discrete capacitors. Far from ideal, the PIN diode remains the choice RF switching component when medium to high in-band RF power handling, 1 to 100 watts or greater, is required. Once a high cost component, diode manufacturers now offer high performance parts in low cost SMD packages. Some JFETs are available that exhibit usable RF switch characteristics, but RF power handling can only approach the 1 watt level. Varactor diodes remain the choice tuning element for RF power handling to 20 mW.

Selecting the Right Tunable Filter

Selecting the right filter for the job requires the designer to consider a number of aspects. These relate to technical performance, size/weight, and cost. On the technical side, the filter performance characteristics can be summarized:

- Insertion Loss
- Bandwidth/Selectivity
- RF Power Handling
- Intercept Point (Third Order Intercept)
- Tuning Range
- Tuning Speed
- Power Consumption

Additionally, the size and weight of the filter must be considered, especially for portable and airborne equipment. And as always, cost is a major driver in engineering decisions.

Insertion Loss (IL) & Bandwidth/Selectivity

An unfortunate rule of nature dictates that a filter's insertion loss and bandwidth are inversely related; the narrower the bandwidth of a filter of a given technology, the higher its loss. The bandwidth-loss relationships are measured by a filter designer using the property called "unloaded Q". This property measures the Q of an unloaded resonant circuit. Q is mathematically defined for a resonant circuit by the equation:

$Q = \omega_0 R^*C$ or $Q = R/(\omega_0 L)$

It is readily obvious that the higher the value of R, which for an unloaded resonator represents the lossy component, the higher the value for Q. The insertion loss of a 2-pole Butterworth filter is given by the equation:

$IL = 20 Log[Q/(Q - \sqrt{2}/(BW_{3dB}(\%)))]$

Again, the only way to improve a filter's IL, for a given technology and bandwidth, is to increase the Q of its resonant circuits. Generally, this means larger size and/or increased DC power consumption, and higher cost, due to higher guality components.

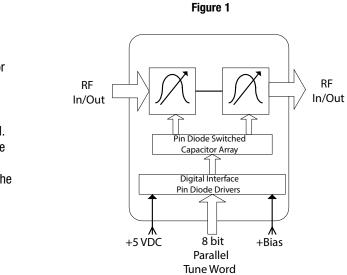
RF Power Handling

This parameter can be the most important one in selecting a tunable filter. As opposed to fixed tuned filters that consist of passive components, tunable filters contain active components, which have limited linearity. The 1 dB compression point of a filter is the RF signal level where IL increases by 1 dB. For a tunable filter, this occurs when the RF signal's peak voltage imposed across an active tuning component, whether PIN diode or varactor, approaches the DC bias voltage applied. For PIN diodes, power handling can be improved with increased reverse bias. However, care must be taken to ensure the sum of the bias voltage and the peak RF voltage do not exceed the breakdown voltage of the parts. Insufficient forward bias current can also limit power handling but is usually of secondary importance.

Intercept Point (IP3)

The Third Order intercept point is a figure of merit for linearity and is closely related to the 1 dB compression of the filter. When two large "interfering" signals (F1 and F2) are applied to a filter (input or output), two new signals are generated which appear one on either side of the interferers and spaced from them by F1 - F2. If these interfering signals occur within the filter's passband, the distortion products can be large and easily fall right on top of a desired signal. In a tunable filter, this distortion is caused by the non-linearity of the active components when large RF voltages are imposed on them. In-band Third Order intercept is generally 10 to 15 dB higher than the 1 dB compression level of a filter. The amplitude of the distortion products decreases as the interfering signals are moved out of the passband and on to the filter skirts. Note that even though the filter being specified may not have to handle high RF levels, the requirement for Third Order intercept may drive its size, weight and cost due to the relationship between RF power handling and Third Order intercept.

Tuning Range


Pole/Zero® filter products offer frequency coverage up to a full octave. The narrower the tuning range required of the filter, the higher the performance. If your tuning range can be reduced, or two half-band filters can be utilized, usually at least one other technical parameter can be significantly improved.

Power Consumption

PIN diodes require DC power when forward biased. Generally, by increasing the forward bias of a diode, unloaded Q is increased and thus IL improved.

Filter Selection

Tunable Filter Designs

Pole/Zero®'s NANO-POLE®, MINI-POLE®, MAXI-POLE®, POWER-POLE® and Extended Range bandpass filters (ERFs) are 2-pole, constant Q designs and are aligned to provide a close approximation to a Butterworth response. Filter tuning ranges are available based on popular communication bands covering 1.5 MHz to 3 GHz. Units are available with standard 3 dB bandwidths from 1.8 to 20%. Figure 1 shows a simplified Block Diagram of a filter module.

Tuning is accomplished via a PIN diode switched binary capacitor array placed in parallel with a high Q inductor or resonator. A single +5 VDC input provides the current for diode forward biasing and an additional input voltage between +30 and +100 VDC is required for diode reverse biasing An internal DC-DC converter running off the +5 VDC supply for generating the high bias is an option on the MAXI-POLE®, and is standard on the POWER-POLE®.

The tuning arrays are driven by a decoder/driver that contains all of the necessary circuitry to receive digital tuning commands, translate them to the internal filter tuning codes, and drive the PIN diodes with the proper bias. The entire tuning process is accomplished in under 10 microseconds for most bands. The standard input format is a parallel 8 bit binary word allowing each filter 251 tune positions (the last 5 tune words are reserved for special functions), linearly spaced over its RF tuning range.

These Selection Guides show a comparison of the different standard filter series available by Pole/Zero®. Customized units are always available as well as Tunable Notch Filters and Integrated Cosite Equipment (ICE).

Tunable Bandpass Filters

Filter Series:	NANO-POLE®	MINI-POLE®	MINI-SMT [™]	MAXI-POLE [®]	POWER-POLE®	MAXI/3	MAXI/4R	MEGA-POLE®
Frequency Range:	30 MHz to 3 GHz	1.5 MHz to 700 MHz	700 MHz to 3 GHz	1.5 MHz to 1 GHz	30 MHz to 400 MHz	300 MHz to 800 MHz	140 MHz to 400 MHz	30 MHz to 450 MHz
IL X BW Product (Typical):	24	20	20	10	8.5	15	18	4.5
Shape Factor (Typical): (30 dB / 3 dB)	6.9	6	7	6	6	3.3 to 3.75	3	6 to 8
In-band RF Power Handling:	+6 dBm	1 Watt (Input)	1 Watt (Input)	1 Watt (Input)	20 Watts (Input)	1 Watt (Input)	1 Watt (Input)	50 Watt Avg.
Input IP3:	+16 dBm	+40 dBm	+40 dBm	+40 dBm	+50 dBm	+40 dBm	+45 dBm	+63 dBm
DC Power Consumption (Static):	+3.3 VDC @ 20 mA (Typical)	+5 VDC @ 10 to 250 mA, +100 VDC @ 2 mA	100 mA (Typical)	+5 VDC @ 10 to 500 mA, +100 VDC @ 2 mA	+5 VDC @ 400 mA to 1.5 A	+5 VDC (125 to 750 mA)	+5 VDC @ 20 to 1500 mA, +100 VDC @ 2 mA	+28V Standard (< 0.5 A)
Tuning Speed (Typical)*:	15 µS	10 µS	4 μS	10 µS	15 μS*	< 25 µS	50 µS	< 25 µS
Size (H \times W \times L) in in.:	.93 × .93 × .21	0.6 × 1.4 × 2.3	1.50 x 1/50 x 0.25	1.5 × 2.5 × 3.3	2.6 imes 3.0 imes 4.0	1.5 × 2.5 × 4.3	3.1 × 3.5 × 7.0	6 × 7.55 × 3.6
Size (H \times W \times L) in mm:	$23.6\times23.6\times5.8$	$15.2\times35.6\times58.4$	38.1 x 38.1 x 6.35	38.1 × 63.5 × 82.6	66.7 × 76.2 × 101.6	38.1 × 63.5 × 108	79.4 × 91.4 × 177.8	152 × 91 × 190
Weight (Typical) in oz.**:	.18	3.2	0.6	9.2	18.7	11.2	43.2	< 60
Weight (Typical) in g**:	5.1	90.7	18	260.8	530.1	317.5	1225	< 1701

* Tuning Speed shown is a typical value for each filter series; the actual tune time can vary significantly based on frequency range and configuration. Please refer to the Switching Characteristics section of each filter series for the maximum tune time.

** Weight varies by configuration, power supply, options, etc.

Extended Range Tunable Bandpass Filters

The Extended Range Filter (ERF) was developed in support of the new family of radios with extended frequency coverage. These products provide broad tunable filtering while focusing on lower cost and smaller size.

Filter Series:	HF-ERF [™]	NANO-ERF®	MINI-ERF [®]	MINI-ERF [®] (S11)	MINI/3-ERF	ERF-5W
Frequency Range:	1.5 MHz to 30 MHz	30 MHz to 520 MHz	30 MHz to 520 MHz	90 MHz to 520 MHz	30 MHz to 512 MHz	30 MHz to 520 MHz
IL & BW Product:	24 (Typical)	30 (Typical)	28 (Typical)	28 (Typical)	30 (Typical)	25 (Typical)
Shape Factor (30 dB / 3 dB):	6 ± 0.5 (Typical)	6 ± 0.5 (Typical)	6 ± 0.5 (Typical)	6 ± 0.5 (Typical)	4 ± 1 (Typical)	4 ± 1 (Typical)
In-band RF Power Handling:	24 dBm typ.	+6 dBm (Input)	1 Watt (Input)	2 Watt (Input) 7% 1 Watt (Input) 4%	1 Watt (Input)	5 Watts (Input)
Input IP3:	34 dBm typ. (Input)	+16 dBm (Input)	+40 dBm (Input)	+40 dBm (Input)	+40 dBm (Input)	+47 dBm (Input)
DC Power Consumption (Static):	+5 V5 @ 400 mA (Max.) +100 VDC @ 3 mA (Max.)	3.3 V @ 15 mA. Additional 15 mA during tuning interval (15 µsec)	+3.3 VDC @ 200 mA (Max.) +100 VDC @ 2.5 mA (Max.)	+3.3 VDC @ 200 mA (Max.) +100 VDC @ 2 mA (Max.)	+5 VDC @ 250 mA (Max.) +1.65 to +5.5 VDC 18 uA (Max.)	+5 VDC @ 1.5 A (Max.) +1.65 to +5.5 VDC 18 uA (Max.)
Tuning Speed (Typical)*:	85 µsec	25 µsec	15 µsec	12 µsec	15 µsec	25 µsec
Size (H \times W \times L) in in.:	2.0 × 2.78 × 0.6	1.10 × 1.10 × 0.216	2.40 × 1.75 × .385	2.0 × 2.0 × .293	0.4 × 2.0 × 2.52	Single: $4.70 \times 6.8 \times 1.0$ Dual: $4.70 \times 6.8 \times 1.90$
Size (H \times W \times L) in mm:	50.8 × 70.61 × 15.24	28 × 28 × 5.5	61 × 44.5 × 9.8	50.8 × 50.8 × 7.4	10.2 × 50.8 × 64	Single: 119.4 × 172.7 × 25.4 Dual: 119.4 × 172.7 × 48.3
Weight (Typical) in oz.:	1.51	0.2	1.05	1.05	1.34	Single: 14.08 Dual: 24
Weight (Typical) in g:	43	6	30	30	38	Single: 399 Dual: 680

4

Tunable Notch Filters

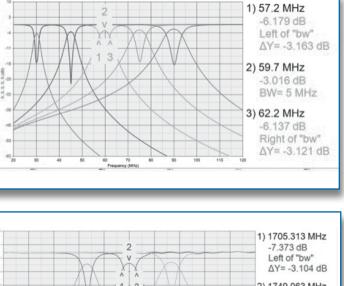
Filter Series:	MINI-POLE [®] Notch	MAXI-POLE [®] Notch	POWER-POLE® NOTCH	MAXI/4R NOTCH
Frequency Range:	1.5 MHz to 425 MHz	1.5 MHz to 400 MHz	30 MHz to 90 MHz	225 MHz to 400 MHz
Notch Depth:	20 dB	20 dB	20 dB	35 dB (Min.)
Notch RF Power Handling:	27 dBm (Typical) (up to 5 Watts @ \pm 20% Offset)	27 dBm (Typical) (up to 10 Watts @ \pm 20% Offset)	36 dBm (Typical) (up to 50 Watts @ \pm 20% Offset)	28 dBm (Typical) (up to 50 Watts @ \pm 20% Offset)
3 dB Bandwidth:	7.5% (Typical)	5% (Typical)	4% (Typical)	10 MHz (Typical)
Passband IP3:	+50 dBm	+50 dBm	+50 dBm	+50 dBm
DC Power Consumption (Static):	+5 VDC @ 10 to 250 mA +100 VDC @ 2 mA	+5 VDC @ 10 to 500 mA +100 VDC @ 2 mA	+5 VDC @ 400 mA to 1.5 A	+5 VDC @ 1.5 A (Max.) +100 VDC @ 2 mA
Tuning Speed (Typical)*:	10 µS	10 µS	20 µS	40 µS
Size (H \times W \times L) in in.:	0.6 × 1.4 × 2.3	1.5 × 2.5 × 3.3	$2.6 \times 3.0 \times 4.0$	3.1 × 3.5 × 7.0
Size (H \times W \times L) in mm:	15.2 × 35.6 × 58.4	38.1 × 63.5 × 83.8	66.7 × 76.2 × 101.6	79.4 × 88.9 × 177.8
Weight (Typical) in oz.:	3.2	9.2	18.7	56
Weight (Typical) in g:	90.7	260.8	530.1 g / 0.5 kg	1588 g / 1.6 kg

* Tuning Speed shown is a typical value for each filter series; the actual tune time can vary significantly based on frequency range and configuration. Please refer to the Switching Characteristics section of each filter series for the maximum tune time.

e/Post-Selector		
Filter Series:	PSEL1003	
Operation:	Broadband Preselector	
Frequency Coverage:	20 to 3000 MHz	
In-band IP3:	+3 dBm (Avg)	
Noise Figure:	8 dB (Avg)	
Gain:	20 dB ± 3 dB	_
Selectivity:	-35 dB @ ± 10% -58 dB @ ± 20% -65 dB @ ± 30%	
Power:	+24V ± 5% +12V ± 5% 2 Watts/path	
Tuning Speed (Typical)*:	< 1 mS	
Temperature Range:	-40° to +50°C	
Size (H \times W \times L) in in.:	Single: 1.0 × 6.5 × 5.0 (in.) Dual: 1.0 × 8.0 × 9.5 (in.)	
Size (H \times W \times L) in mm:	Single: 25.4 × 165.1 × 127.0 (mm.) Dual: 25.4 × 203.2 × 241.3 (mm.)	
Weight (Typical) in lbs.:	Single: 1.4 lbs. Dual: 2.8 lbs.	
Weight (Typical) in kg:	Single: .64 kg Dual: 1.27 kg	
	///	

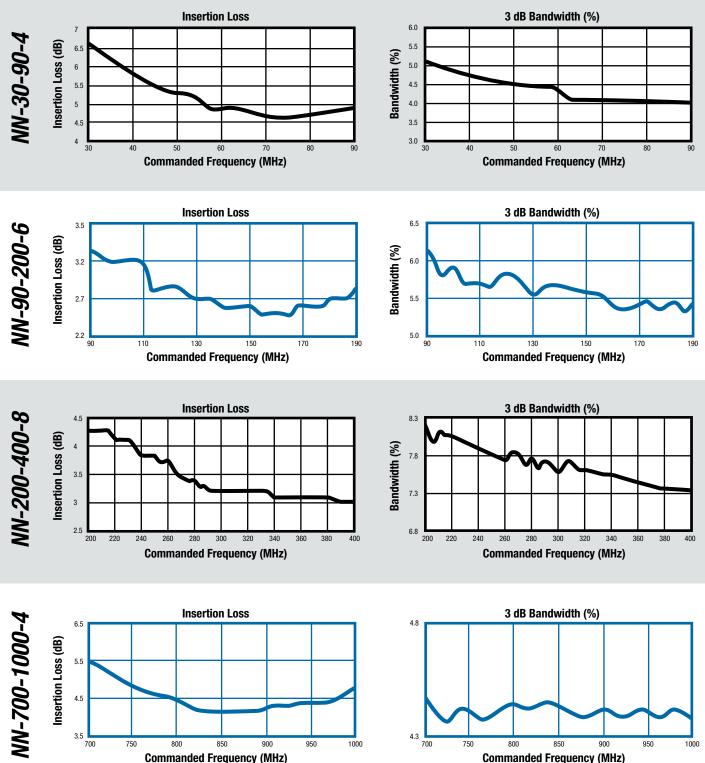
Filter Selection

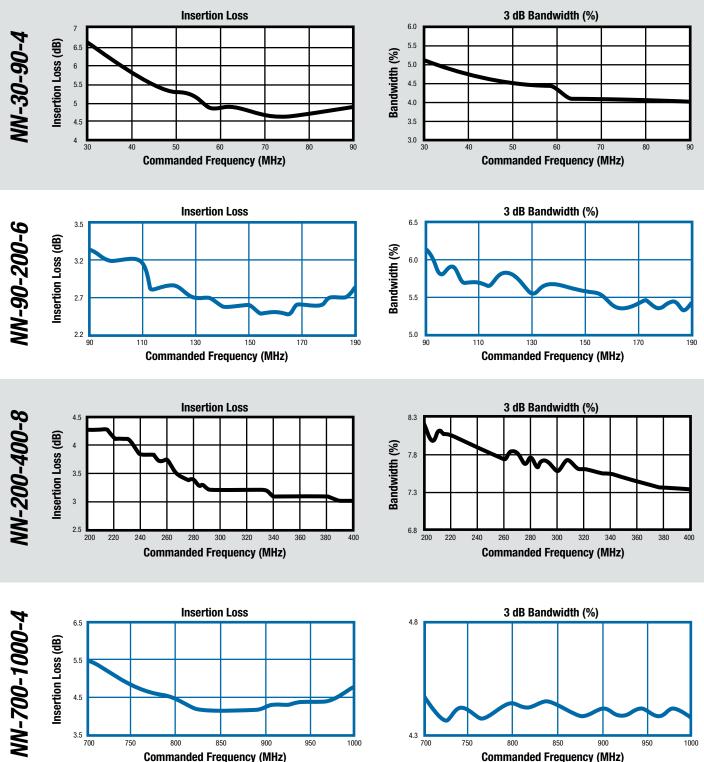
The **NANO-POLE**[®] is a low-cost, miniature, high-performance tunable filter with SPI customer interface. All filters are fully tested and aligned by Pole/Zero® for convenience and ease of use.

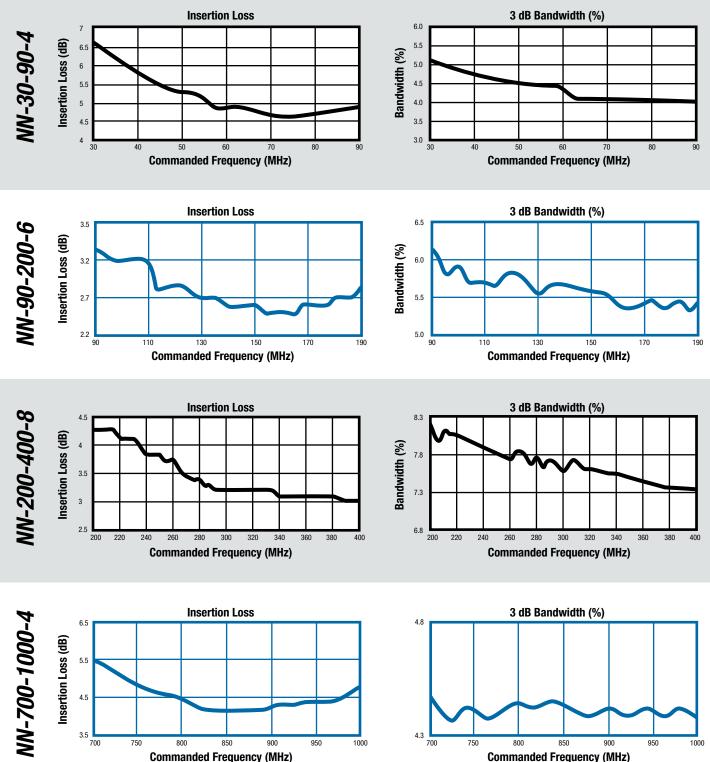

Performance:

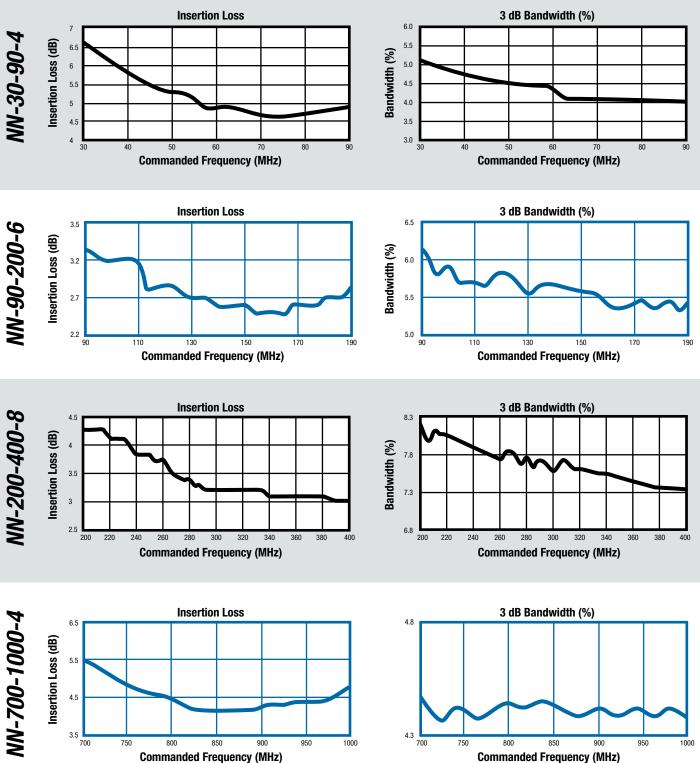
The following plots illustrate approximate performance (not representative of all frequency ranges):

NANO-POLE® SERIES


Specifications:


Frequency Coverage (12 bands):	30 MHz to 3 GHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical
In-band RF Power Handling:	+6 dBm (input) typical
Outband RF Power Handling:	+24 dBm
In-band Second Order Intercept Poin	t: +70 dBm
In-band Third Order Intercept Point:	+16 dBm typical
Center Frequency Drift:	100 PPM/ºC
Tuning Control:	SPI
Tuning Speed:	15 uS typical
DC Power Consumption (Static):	+3.3 VDC @ 20 mA typical
Shape Factor:	6.9 typical
Operating Temperature Range:	-40°C to +85°C
Size: (30 to 3000 MHz): .787 × .787 × .	196 (in.) / 20 × 20 × 5 (mm.)
Weight:	.18 oz. / 5.1 g.
RF Connection:	SMT castellations





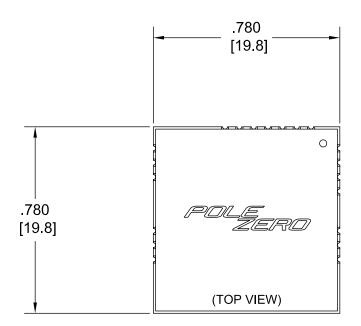
The following plots illustrate approximate insertion loss and bandwidth trends across a given frequency band, and the differences between various bands:

Tunable Bandpass Filters

NANO-POLE® SERIES Selection Guide:

Frequency	Suffix	% Bandwidth	Insertion	Shap Overall	e Factor (30 dB Low Side	
Range		(3 dB)	2000		LOW SIDE	High Side
30 to 90	-3	3	8.33	7		
MHz	-4	5	5	7		
	-10	10	2.5	7		
	-3	3	6.7	7		
90 to 200 MHz	-5	5	4	7		
	-10	10	2	7		
	-3	3	8.33	7		
200 to 400 MHz	-5	5	5	7		
	-10	9/11	2.5	7		
	-3	3	8.33	7		
225 to 512 MHz	-5	5	5	7		
11112	-10	9/11	2.5	7		
	-3	3	8.33	7		
400 to 700 MHz	-5	5	5	7		
11112	-10	10	2.5	7		
	-3	3	8.33	7		
700 to 1000 MHz	-5	5	5	7		
11112	-10	10	2.5	7		
	-3	3	8.33	7		
1000 to 1500 MHz	-5	4.8/5.5	4.3/5.3	6.8/7	6.6/6.8	7/7.1
11112	-10	10	2.5	7		
	-3	3	8.33	7		
1500 to 2000 MHz	-5	5.0/5.4	3.3/5.0	6.8/7.3	6.5/6.8	7/7.8
IVII IZ	-10	10	2.5	7		
	-3	3	8.33	7		
2000 to 3000 MHz	-5	5.3/5.8	6.5/7.9	7.6/9.8	7/7.7	7.4/12.5
	-10	10	3.3	7		

Pinout & Ratings:


PIN #	Reference Designator	Description	Maximum Ratings
1	MOSI	Master Output, Slave Input	
2	MISO	Master Input, Slave Output	-0.5 to
3	SCLK	Serial Clock	$(V_{CC} + 0.5)V$
4	CS	Chip Select]
5, 6, 8, 18-20	N/C	No Connect,	-
7	TUNE_READY	Tune Ready Output	-
9, 11, 13, 14, 16, 17	GND	Digital/RF Ground	-
10	Vcc	+3.3V Power Supply Input	-0.3 to 4V
12	RF_IN	RF Input	+6 dBm, +24 dBm ₂
15	RF_OUT	RF Output	+6 dBm, +24 dBm ₂

Note(s): 1 Leave floating for unit to function properly.

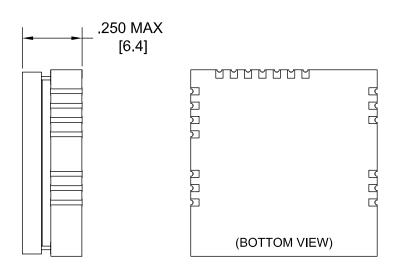
 2 First number indicates maximum in-band power levels and second number indicates maximum out of band RF power levels either in CW or composite average for multi-tones.

Mechanical Outline:

S02: 30 - 3000 MHz

This Selection Guide illustrates approximate performance for the NANO-POLE® Series: Table values are shown as average/maximum.

Data shaded in blue is modeled and shown for reference only. Filter not in production at the time of printing.

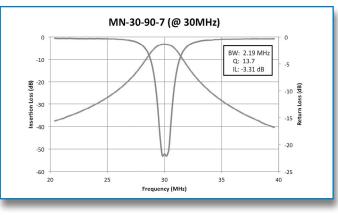

NANO-POLE® Series Product Number Guide:

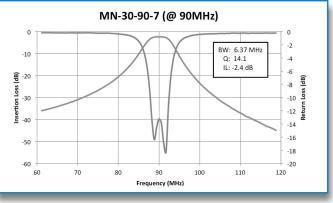
Series	Frequency (MHz)	% Bandwidth (3 dB)	Package
	30-90		
	90-200		
	200-400		
	225-512		
NN	400-700	3 thru 15	S02
	700-1000		
	1000-1500		
	1500-2000		
	2000-3000		

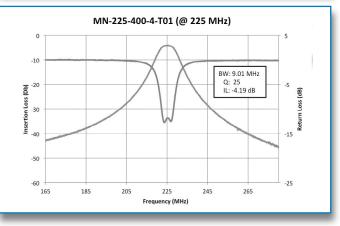
8

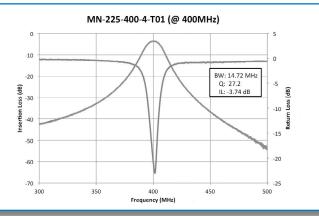
Example: Product # NN-30-90-3-S02

The MINI-POLE® Series of tunable filters is optimized for size, RF power handling, low distortion and exceptional selectivity. The product line includes several standard designs in various bands to support a myriad of applications. Approximate performance is summarized in the MINI-POLE® Series Selection Guide. Evaluation cards available for T01 package.

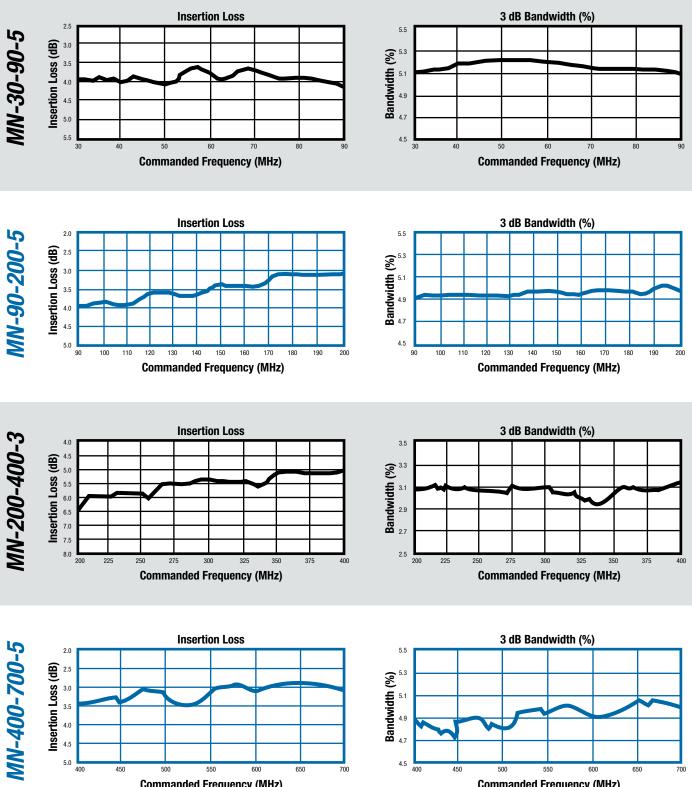

MINI-POLE® SERIES

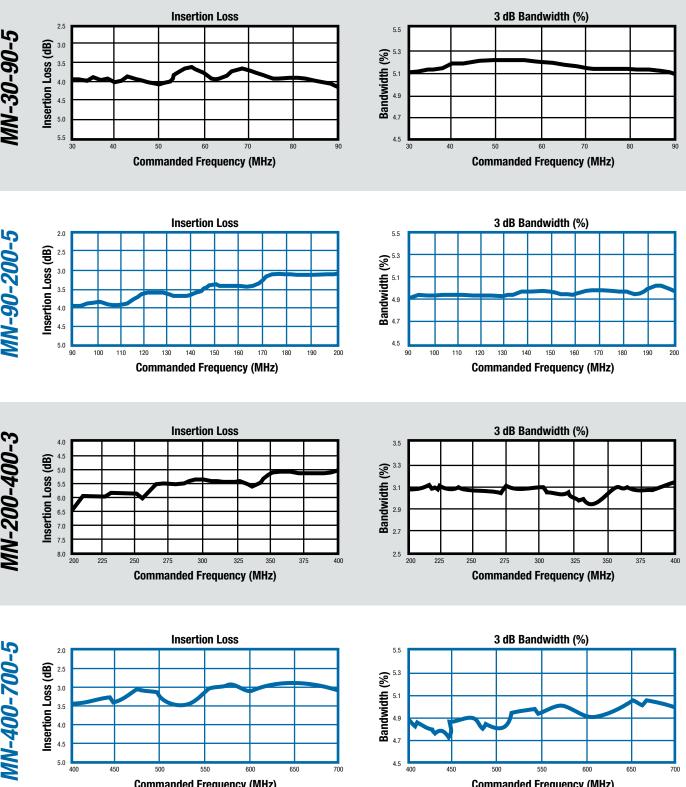

Specifications: T02

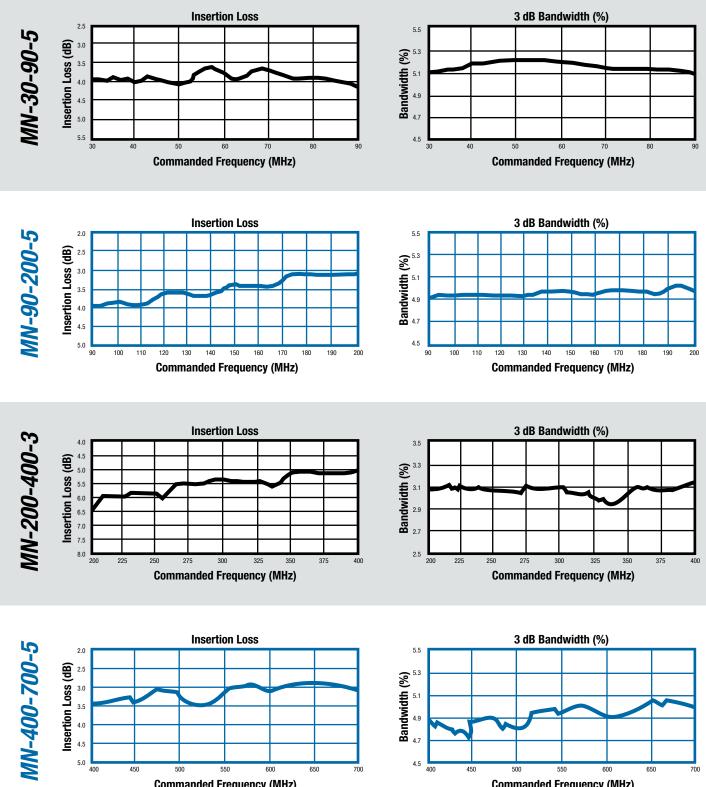

Frequency Cover	age (9 bands):	1.5 MHz to 700 MHz
Input/Output Impe	dance:	50Ω
In-band Input/Out	put VSWR:	1.5:1 typical
In-band RF Power	Handling:	Up to 1 Watt
Outband RF Powe	r Handling:	Up to 5 Watt
In-band Second O	rder Intercept Poi	nt: +100 dBm (input)
In-band Third Ord	er Intercept:	+40 dBm (input, f ₀ > 30 MHz)
Center Frequency	Drift:	-80 PPM/°C
Tuning Control:		8 bit parallel
Tuning Speed:		30 MHz, +10 dBm reference) 30 MHz, +10 dBm reference)
DC Power Consun	nption (Static):	+5 VDC @ 10 to 250 mA, +100 VDC @ 2 mA
Shape Factor (30	dB/ 3 dB):	6 typical
Operating Temper	ature Range:	-40°C to +85°C
Size: 0	$0.6 \times 1.4 \times 2.3$ (ir	n.) / 15.2 × 35.6 × 58.4 (mm.)
Weight:		3.2 oz. / 90.7 g.
RF Connection:		Thru-hole pin

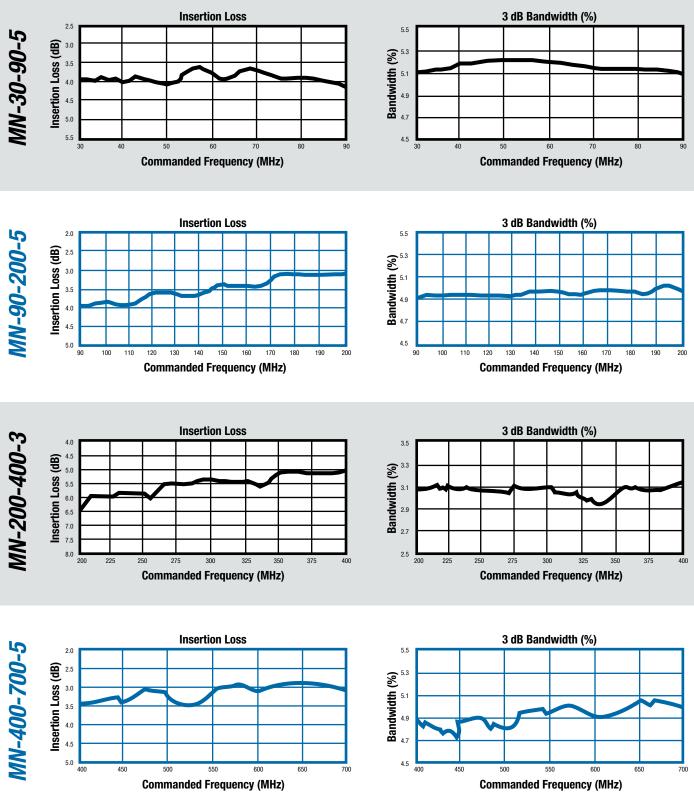

Performance:

The following plots illustrate approximate performance (not representative of all frequency ranges):









The following plots illustrate approximate insertion loss and bandwidth trends across a given frequency band, and the differences between various bands:

Tunable Bandpass Filters

MINI-POLE® SERIES Selection Guide

The following Selection Guide illustrates approximate performance for the MINI-POLE® Series. Table values are shown as average/maximum.

Frequency Range	Suffix	% Bandwidth (3 dB)	Insertion Loss	Strobe Rate (max.)	S Overall	Shape Factor (30 dB / 3 dB Low Side) High Side	*Ultimate (2 x f _o)
naliye	-20	(3 UB)	LUSS		Uverali	LOW Side	nigii Side	(2 X I ₀)
	-20	9.9/10.6	1.7/2.9		6.0/6.5	7.1/8.0	4.9/5.3	55 dB
	-10	7.6/8.0	2.5/3.5	4	5.6/5.8	6.1/6.5	4.9/5.3	60 dB
1.5 to 4 MHz	-7 -5	4.9/5.5	3.0/4.6	170 Hz	5.0/5.0	0.1/0.5	5.1/5.5	60 dB
11112	-3	4.0/4.5	4.2/5.7	1	5.7/6.2	6.1/7.0	5.4/5.8	60 dB
	-4	3.0/3.5	4.4/6.4		6.2/6.4	6.6/6.9	5.9/6.2	60 dB
	-20	3.0/3.3	4.4/0.4		0.2/0.4	0.0/0.5	5.9/0.2	00 05
	-10	10.0/10.6	1.8/2.7	-	5.7/6.2	6.6/7.6	4.8/5.1	55 dB
4 - 10	-7	7.2/7.9	2.4/3.5	-	5.5/5.7	5.9/6.4	5.1/5.2	60 dB
4 to 10 MHz	-7 -5	5.0/5.5	3.1/4.2	170 Hz	5.7/6.3	6.1/7.2	5.3/5.6	60 dB
11112		4.2/4.5	3.4/5.0	•	5.6/6.2	5.9/6.4	5.4/6.1	60 dB
	-4	3.1/3.5	5.0/8.0	•	5.9/6.6	6.1/6.7	5.8/6.4	60 dB
	-3	3.1/3.3	5.0/6.0		5.9/0.0	0.1/0./	5.0/0.4	00 UB
	-20	9.7/11.0	1.8/2.7	1	5.9/6.1	6.8/7.4	5.0/5.2	55 dB
40.1.00	-10	7.5/7.9	2.4/3.0	-	5.6/6.1	6.2/7.0	5.1/5.5	60 dB
10 to 30 MHz	-5	5.1/5.5	3.5/4.4	840 Hz	5.8/6.2	6.2/7.1	5.3/5.7	65 dB
1411 12	-3	4.0/4.4	4.2/6.1	1	5.8/6.3	6.1/6.8	5.5/5.9	65 dB
	-4	3.2/3.5	4.2/6.1	1	5.9/6.7	6.2/7.3	5.5/5.9	70 dB
	-3	20.2/21.7	1.0/1.2		5.9/6.5	7.3/9.0	4.4/4.8	45 dB
	-20	10.3/10.9	1.8/2.7	1	6.0/6.5	6.9/8.0	5.1/5.5	45 dB
00 to 00	-7	6.9/7.9	2.7/3.6		5.8/6.2	6.5/7.0	5.2/5.7	60 dB
30 to 90 MHz	-5	5.2/5.5	3.9/4.6	1.5 kHz	5.9/6.3	6.4/6.9	5.5/5.8	65 dB
11112	-4	3.9/4.5	4.8/6.3		6.1/6.6	6.5/7.1	5.7/6.2	70 dB
	-4	3.2/3.5	6.8/8.5		5.9/6.6	6.1/7.0	5.7/6.3	70 dB
	-20	3.2/3.3	0.0/0.3		5.9/0.0	0.1/7.0	5.770.5	70 UB
	-10							
00 to 000	-7							
90 to 200 MHz	-5	5.0/5.5	3.5/4.6	1.8 kHz	5.9/7.6	6.2/8.2	5.6/7.0	65 dB
	-4	4.0/4.5	4.4/6.3		5.6/6.0	5.9/6.3	5.3/5.7	70 dB
	-4	3.0/3.5	6.2/8.		5.7/5.9	6.0/6.0	5.5/5.7	70 dB
	-20	3.0/3.3	0.2/0.		5.175.5	0.0/0.0	5.5/5.1	70 00
	-10			-				
200 to 400	-7	6.7/7.9	2.1/3.5		5.8/6.3	6.2/6.6	5.3/5.9	60 dB
200 to 400 MHz	-5	5.0/5.5	3.1/4.6	2 kHz	5.7/6.0	6.0/6.6	5.4/5.8	65 dB
	-4	3.8/4.5	4.5/6.3		5.8/6.1	6.3/6.8	5.3/5.7	70 dB
	-4	3.0/3.5	5.8/8.5		5.7/6.0	6.3/6.6	5.2/5.5	70 dB
	-20	3.0/3.3	3.0/0.3		5.770.0	0.3/0.0	3.2/3.3	45 dB
	-10	9.8/11.0	1.6/2.3	1	5.8/6.2	7.0/7.7	4.5/5.0	45 dB
225 to 400	-7	0.0/11.0	1.0/ 2.0	1	0.0/0.2	1.0/1.1	4.0/0.0	55 GD
225 t0 400 MHz	-5	4.9/5.5	3.2/4.6	2 kHz	5.4/5.9	5.7/6.0	5.2/5.8	65 dB
	-4	3.6/4.5	4.5/6.3	1	5.6/5.7	6.1/6.3	5.1/5.3	70 dB
	-4	3.0/3.5	5.6/8.5	1	5.6/6.0	6.1/6.5	5.1/5.5	70 dB
	-20	0.0/0.0	0.0/0.0	1	3.0/0.0	0.1/0.5	0.1/0.0	45 dB
	-10	9.8/11.0	1.6/2.7	1	5.7/6.0	6.6/7.7	4.7/5.5	45 dB
225 to 512	-7	7.2/8.0	2.1/3.6	1	5.8/6.3	6.2/6.6	5.3/5.9	60 dB
225 to 512 MHz	-5	5.0/5.5	3.3/4.7	2 kHz	5.7/6.0	6.0/6.6	5.4/5.8	65 dB
	-4	0.0/0.0	0.0/1.1	1	0.1/0.0	0.0/0.0	0.470.0	70 dB
	-4			1		 		70 dB
	-20			1		<u>├</u> ───┼		45 dB
	-10			1		<u>∤</u>		45 dB
400 to 700	-7			1		+		60 dB
400 to 700 MHz	-5	4.9/5.5	3.0/5.0	2 kHz	5.8/6.4	6.4/7.9	5.1/5.8	65 dB
	-4		0.0/0.0	1	0.0/0.4	0111.0	0.170.0	05 00
	-4			4		+		

* Typical performance, ultimate selectivity is not guaranteed

** Source/Load VSWR effects on power handling

MINI-POLE® Filters Product Number Guide:

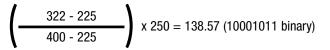
Series	Frequency (MHz)	% Bandwidth (3 dB)	Package	Option
MN	1.5-4 4-10 10-30 30-90 90-200	-20 -10 -7	T01 (Standard)	В
	200-400 225-400 225-512 400-700	-5 -4 -3	TO2 (Sealed)	C

Available Optio	 ns: B. Serial Interface C. Custom Frequency Bands (Specify START and STOP frequencies in MHz)
Note(s):	Options may be limited to particular frequency bands and/or performance levels. Consult factory for your application.
Example:	Product # MN-90-200-7-T02

Interface & Control Options:

Frequency Tuning Address

There are 250 equally spaced tuning increments across each standard filter band, resulting in 251 tunewords from 00000000 to 11111010. The last 5 tunewords are reserved for housekeeping functions:


Tune Code	Result
00000000 thru 11111010	Lowest tuned frequency (251 total tune codes) Highest tuned frequency
111111011 thru 11111110	RF In/Out Isolation Filter Blanked
1111111	Power saver mode; all PIN diodes turned off

Calculating a Tune Address

The binary tuning word is determined by the following relationship:

tuneword =
$$\left(\frac{F \text{ desired} - F \text{ low}}{F \text{ high} - F \text{ low}}\right) \times 250$$

Example: If you wish to tune to 322 MHz using a 225 to 400 MHz filter, the tuneword is:

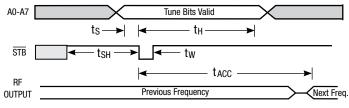
Note: Round off to the nearest decimal integer

Tunable Bandpass Filters

Bias Voltage Requirement:

A bias voltage is required to reverse bias the PIN diodes used to tune the filter. Very little static current (less than 2 mA) is needed. A minimum of 30 Volts is recommended for proper filter operation. As this voltage is increased, the power handling capability and intermodulation are improved as shown below. A bias voltage of +100 VDC is recommended for best results, and all filters are tuned and aligned this way from the factory unless otherwise specified by the customer.

Interface Options:


The filter comes standard with an 8 bit parallel interface, although a serial interface can be specified as an option.

DC Control Interface Characteristics:

Symbol	Parameter	Condition	Minimum	Maximum	Units
V _{IL}	Input Low Voltage	Control signals except A0-A7	0.0	0.2 Vcc	V
v _{IH}	Input High Voltage	Control signals except A0-A7	0.7 Vcc	Vcc	v
V _{IL1}	Input Low Voltage	A0-A7	0.0	0.15 Vcc	V
V _{IH1}	Input High Voltage	A0-A7	0.7 Vcc	Vcc	V

Switching Characteristics: ($Vcc = +5 VDC, \pm 10\%$; T = -40° to +85°C)

Symbol	Parameter	Minimum	Maximum	Units
ts	Setup Time, A0-A7 to STB	200		nS
t _H	Hold Time, A0-A7 from STB	6		μS
t _{SH}	STB High Time	25		μS
tw	STB Pulse Width	20		nS
t _{DW}	Strobe Dwell Time (from STB falling edge to next STB falling edge)	500		μS
t _{ACC}	Access Time from $\overline{\text{STB}}$ to f_0		10	μS

Strobe

The filter is tuned within 10 μ S (fo > 30 MHz) to the frequency designated by the tuneword existing on the eight control bit lines when the STB line is brought low. Once strobed, data existing on the tune control lines is ignored until strobed again. Consult the Selection Guide on page 12 for the maximum strobe rate in each frequency band.

RF Power Handling Capability

The filters are designed to operate with RF input power levels up to 1 Watt (+30 dBm) in-band. Signals in the filter stopband up to 5 Watts at the input will not cause damage to the filter.

Temperature Effects

Over the -40°C to +85°C temperature range, filters will exhibit a negative temperature drift of less than 80 PPM/°C, or a total of less than \pm 0.5% of the center frequency.

40

35

25

15

10

1 Wat

Input Power (dBm)

In-band

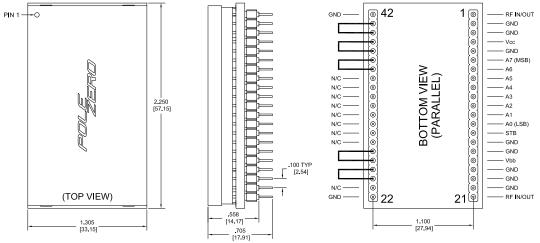
MINI-POLE[®] SERIES (Continued)

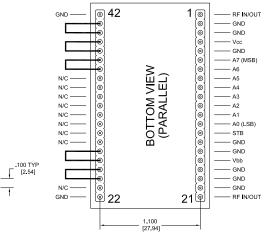
In-band RF Power Rating

Bias=+100VDC

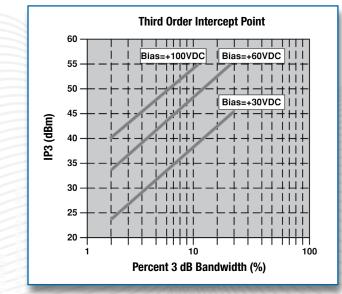
5

Bias=+60VDC


Bias=+30VDC


10

14


Mechanical Outline:

MINI-POLE® T01

Note(s): 1. Pin diameter is 0.020" 2. Pins must be jumpered as shown above 3. Custom pin lengths available upon request

2

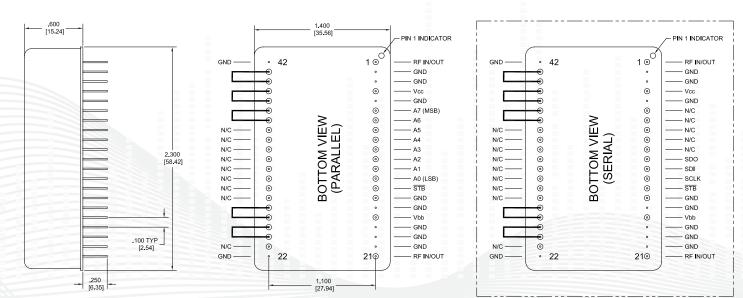
Percent 3 dB Bandwidth (%)

Note: In/Out VSWR = 1:1

Pinout & Ratings:

IVI	IN	-	Рυ	L	Ľ٣

PARALLEL INTERFACE					
PIN #	Reference Designator	Description	Maximum Ratings		
1, 21	RF I/0	RF Input/Output	+30 dBm		
2, 3, 5, 15, 16, 18-20, 22, 42	GND	Digital/RF Ground	-		
4	V _{cc}	+5V Power Supply Input ± 10%	-0.5 to +6V		
6	A7	Parallel Bit 7			
7	A6	Parallel Bit 6			
8	A5	Parallel Bit 5			
9	A4	Parallel Bit 4	-0.6 to +6.25V		
10	A3	Parallel Bit 3	-0.0 10 +0.25V		
11	A2	Parallel Bit 2			
12	A1	Parallel Bit 1			
13	A0	Parallel Bit 0			
14	STB	Strobe	-0.5 to (V _{cc} + 0.5)V		
17	V _{BB}	High Bias +100V Supply Input	-0.5 to +125V		
23, 28-35	N/C	No Connect (1)	-		
24-27, 36-41	Filter Enable	Filter Enable Pins (2)	-		


Note(s): 1 Leave pins disconnected for unit to function properly. 2 Pins must be jumpered as shown in package outline for filter to function properly.

SERIAL INTERFACE					
PIN #	Reference Designator	Description	Maximum Ratings		
1, 21	RF I/0	RF Input/Output	+30 dBm		
2, 3, 5, 15, 16, 18-20, 22, 42	GND	Digital/RF Ground	-		
4	V _{cc}	+5V Power Supply Input ± 10%	-0.5 to +6V		
6-10, 23, 28-35	N/C	No Connect (1)	-		
11	SDO	Serial Data Out			
12	SDI	Serial Data In	0.5 to (// 0.5)//		
13 SCLK		Serial Clock	-0.5 to $(V_{cc} + 0.5)V$		
14	STB	Serial Strobe			
17	V _{BB}	High Bias +100V Supply Input	0 to +125V		
24-27, 36-41	Filter Enable	Filter Enable Pins (2)	/		

Note(s): 1 Leave pin disconnected for unit to function properly.

Mechanical Outline:

MINI-POLE® T02

Note(s): 1. Package can be gross leak tested upon request

2. Pin diameter is 0.020"

3. Pins must be jumpered as shown above

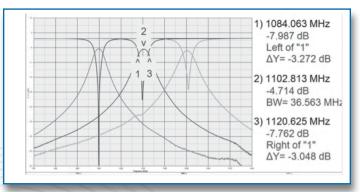
4. Some variations could have a pin length as low as 0.187

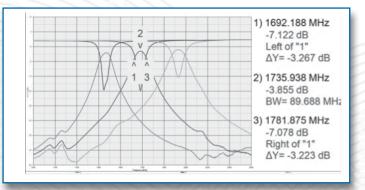
Data is believed to be accurate. All data is subject to change without notice.

Tunable Bandpass Filters

The **MINI-SMT[™]** Series of tunable filters was developed to address applications needing a small, surface mount package with higher power. Parallel or serial digital interface can be selected by a mode pin for ease of integration into your design and choose from a large variety of bandwidth and insertion loss combinations.

MINI-SMT[™] SERIES


Specifications:


Frequency	Coverage	(multiple bands):	700 MHz to	3000 MHz

50Ω
1.5:1 typical, 2.2:1 max
+30 dBm (input)
+36 dBm (input)
+100 dBm
+40 dBm (input)
60 PPM/°C
Parallel or Serial
4 μS
100 mA typical
7 typical
-40°C to +85°C
8.1 × 38.1 × 6.35 (mm.)
0.6 oz. / 18 g.
SMT castellation

Performance:

The following plots illustrate approximate performance:

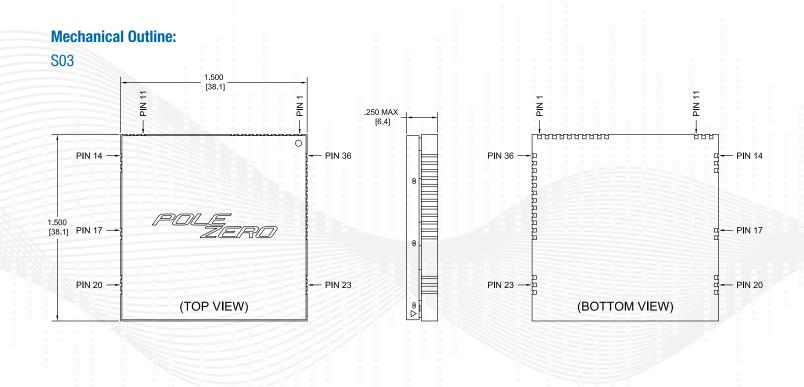
MINI-SMT[®] Filters Product Number Guide:

Series	Frequency (MHz)	% Bandwidth (3 dB)	Package
	700-1000		
	960-1240		S03
MN	1000-1500	5	
IVIN	1500-2000	5	
	2000-2500		
	2500-3000		

Example: Product # MN-700-1000-5-S03

Interface & Control Notes:

General Information


The **MINI-SMT**[®] filter requires only one +3.3 VDC supply voltage. An on-board +100 VDC DC-DC converter is included. If low frequency noise is of concern, then this supply can be disabled and an external +100 VDC supply may be used. This supply voltage should be adequately filtered as noise present on these pins will influence the RF signal purity.

Digital Interface Information

The digital interface format can be either SPI serial or parallel depending on the state of the mode control pin. All data input pins are 3.3V logic.

MINI-SMT® SERIES Selection Guide:

Frequency	Suffix	% Bandwidth	Insertion	Shape	Factor (30 dB / 3	3 dB)
Range	Sumix	(3 dB)	Loss	Overall	Low Side	High Sid
700 to 1000 MHz	-5	4.7	3.65	6.5	6.45	6.48
960 to 1240 MHz	-3	3.2	4.95	7.0	7.2	6.5
1000 to 1500 MHz	-5	4.7	3.65	6.5	6.58	6.45
1250 to 1850 MHz	-5	5	3.8	6.8	6.3	7.6
1500 to 2000 MHz	-5	5.4	3.8	6.8	6.3	7.6
2000 to 2500 MHz	-5	4.9	3.55	7.3	8.6	6.1
2500 to 3000 MHz	-5	5.2	3.88	7.99	7.88	8.5

Data is believed to be accurate. All data is subject to change without notice.

Tunable Bandpass Filters

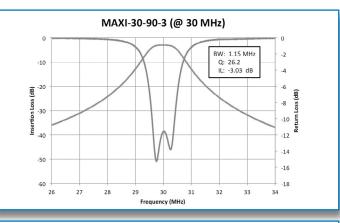
Pinout & Ratings:

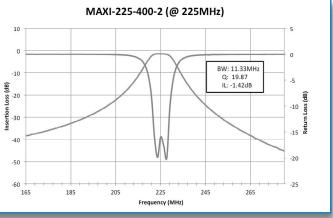
PIN #	Reference Designator	Description	Maximum Ratings
1, 2, 7, 8, 17, 27	N/C	No Connect (1)	-
3	MOSI	Master Output, Slave Input	
4	MISO	Master Input, Slave Output]
5	SCLK	Serial Clock	-0.5 to (V _{cc} + 0.5)V
6	CS/STB	SPI Chip Select Parallel Strobe	0.5 to (V _{CC} + 0.5)V
9	SER/PAR	Serial/Parallel Mode Selection	7
10	TUNE READY	Tune Ready Output	-
11-16, 18, 19, 21-22, 24, 26, 36	GND	Digital/RF Ground	-
20	RF IN	RF Input	+30 dBm, +37 dBm (2)
23	RF OUT	RF Output	+30 dBm, +37 dBm (2)
25	Vcc	+3.3V Power Supply Input	-0.3 to 4V
28	A7	Parallel Bit 7	
29	A6	Parallel Bit 6	
30	A5	Parallel Bit 5	7
31	A4	Parallel Bit 4	-0.5 to (V _{cc} + 0.5)V
32	A3	Parallel Bit 3	7
33	A2	Parallel Bit 2	7
34	A1	Parallel Bit 1	
35	A0	Parallel Bit 0	-0.3 V to 4 V

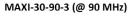
Note(s): 1. Leave pins disconnected for unit to function properly.

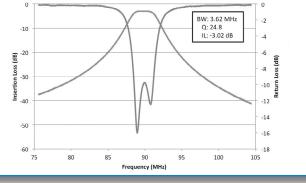
2. First number indicates maximum in-band power levels and second number indicates maximum out of band RF power levels either in CW or composite average for multi-tones.

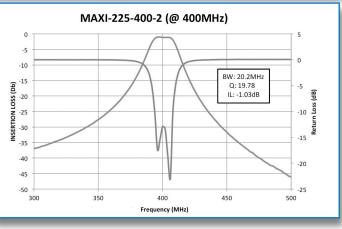
The **MAXI-POLE®** Series of tunable filters provides improved passband performance (reduced insertion loss for a given bandwidth) in a slightly larger package. The product line includes several standard designs in various frequencies to support almost any application.

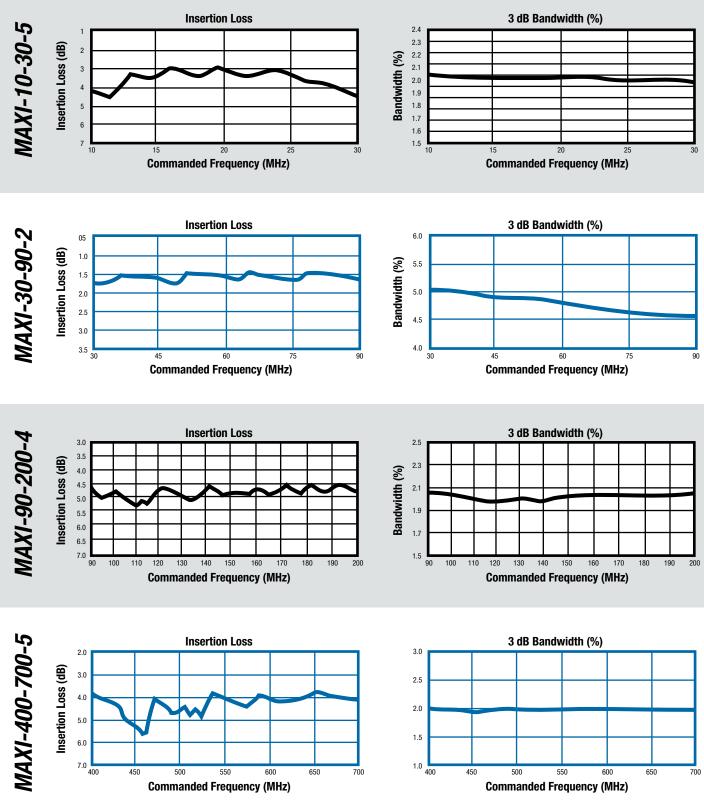

MAXI-POLE® SERIES

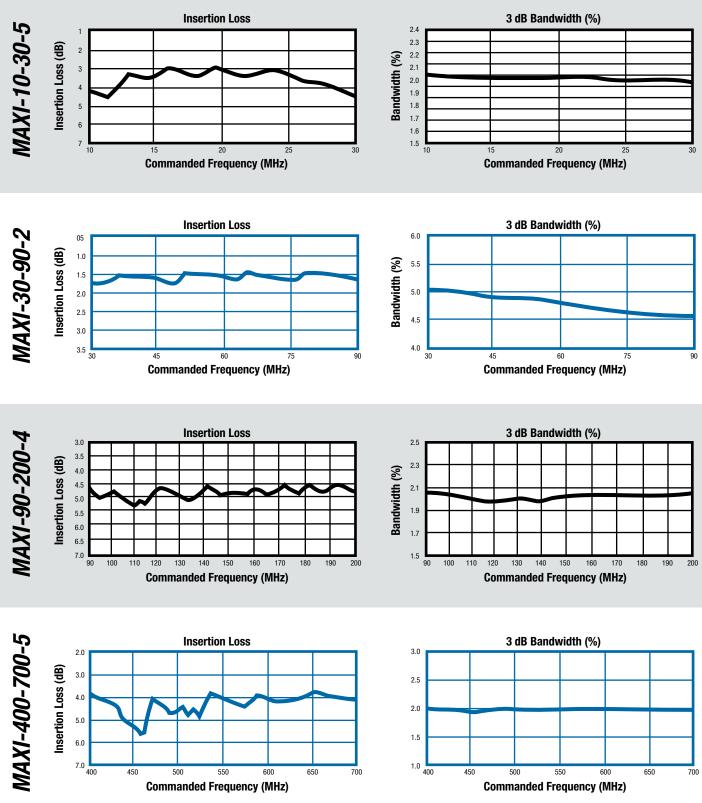

Specifications:

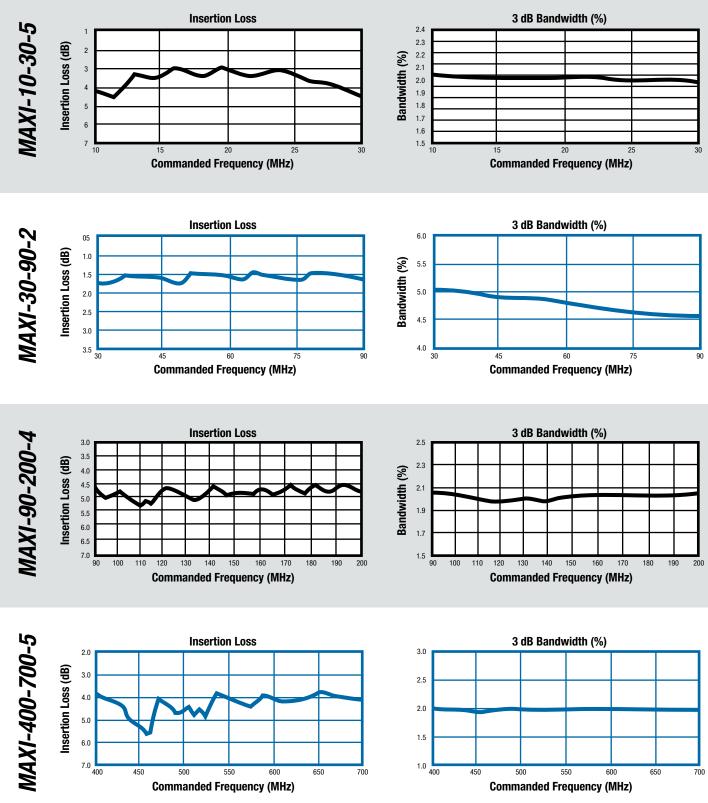

Frequency Coverage (8 bands):	1.5 MHz to 1 GHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical
In-band RF Power Handling:	1 Watt (input)
Outband RF Power Handling:	Up to 5 Watt
In-band Second Order Intercept Point:	+100 dBm (input)
In-band Third Order Intercept Point:	+40 dBm (input)
Center Frequency Drift:	-80 PPM/°C
Tuning Control:	8 bit parallel
Tuning Speed: $10 \ \mu\text{S} \ (f_0 > 30)$	MHz, +10 dBm reference)
DC Power Consumption (Static):	+5 VDC @ 10 to 500 mA +100 VDC @ 2 mA
Shape Factor (30 dB/ 3 dB):	6 typical
Operating Temperature Range:	-40°C to +85°C
Size: 1.5 × 2.5 × 3.3 (in.) /	38.1 × 63.5 × 82.6 (mm.)
Weight:	9.2 oz. / 260.8 g.
RF Connection:	SMA jack

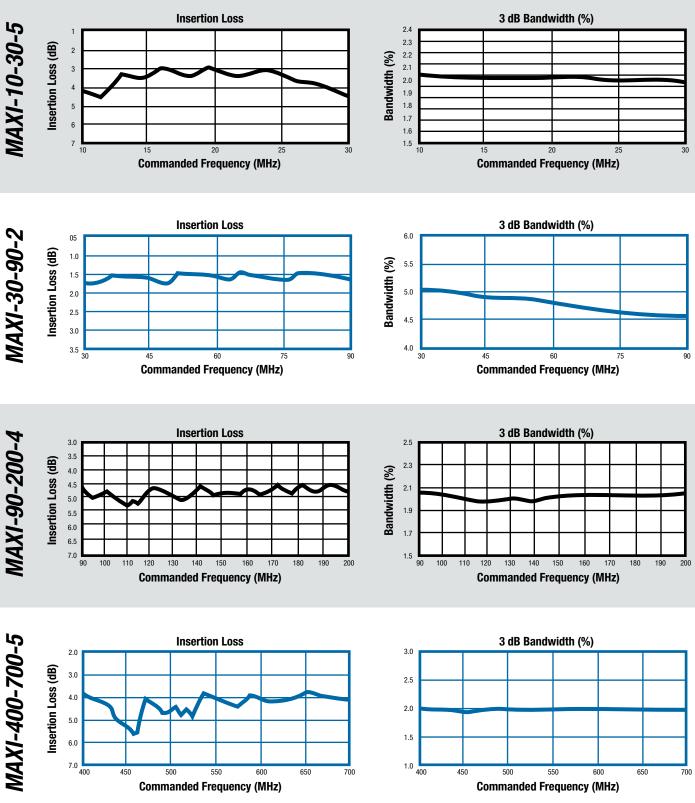

Performance:


The following plots illustrate approximate performance (not representative of all frequency ranges):





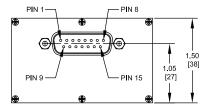


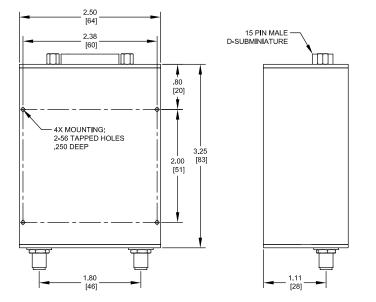


The following plots illustrate approximate insertion loss and bandwidth trends across a given frequency band, and the differences between various bands:

Data is believed to be accurate. All data is subject to change without notice.

Tunable Bandpass Filters


Tunable Bandpass Filters


MAXI-POLE® SERIES Selection Guide:

The following Selection Guide illustrates approximate performance for the **MAXI-POLE®** Series. Table values are shown as average/maximum.

Frequency	Suffix	% Bandwidth	Insertion	Strobe Rate	SHA	PE FACTOR (30	dB)
Range	Sumix	(3 dB)	Loss	(max.)	Overall	Low Side	High Side
	-2	5.3/5.5	1.8/2.3		5.8/6.1	6.8/7.3	4.8/4.9
1.5 to 4	-3			1			
MHz	-4			170 Hz			
	-5			1			
	-2	5.3/5.5	1.8/2.3		6.0/6.2	7.0/7.2	5.0/5.1
4 to 10	-3	3.4/3.8	2.2/3.5	1 170.11	5.9/6.2	7.1/7.6	4.8/5.0
MHz	-4			170 Hz			
	-5	1.9/2.2	3.8/6.3	1	6.1/6.2	6.9/7.0	5.3/5.4
	-2	5.1/5.5	1.4/2.3		6.1/6.3	7.0/7.4	5.1/5.2
10 to 30	-3	3.6/3.8	2.0/3.5		6.1/6.5	7.3/8.0	4.9/5.2
MHz	-4	2.4/2.8	3.5/4.5	840 Hz	5.9/6.0	6.6/6.7	5.2/5.4
	-5	2.0/2.2	4.3/6.3	1	5.8/6.1	6.6/7.2	5.0/6.1
	-2	4.8/5.5	1.6/3.0		6.7/7.7	9.2/11.3	4.2/4.6
30 to 90	-3	3.5/3.9	2.4/3.5	1	5.9/6.3	6.6/7.6	5.2/6.0
MHz	-4	2.6/2.8	3.5/4.5	1.5 kHz	5.8/5.9	6.8/7.1	4.8/4.9
	-5	2.0/2.2	4.3/5.8		5.5/6.3	6.3/7.3	4.7/5.3
	-2	5.3/5.5	1.7/2.3	1.8 kHz	5.9/6.1	6.9/7.4	4.9/5.1
90 to 200	-3	3.5/3.9	2.7/3.5		5.8/6.0	6.7/7.2	4.9/5.1
MHz	-4	2.5/2.7	3.3/5.3		5.8/6.1	6.7/7.0	5.0/5.2
	-5	1.9/2.2	4.3/6.3		5.8/6.3	6.4/7.0	5.1/5.6
	-2	4.8/5.5	1.4/2.3		5.9/6.5	7.3/8.1	4.6/5.0
200 to 400	-3	3.4/3.9	2.0/3.3	0.111-	5.9/6.3	6.9/7.5	4.9/5.1
MHz	-4	2.4/2.8	3.1/4.5	2 kHz	5.8/6.3	6.5/7.1	5.0/5.3
	-5	1.9/2.2	4.2/6.3		5.7/6.3	6.5/7.1	5.0/5.5
	-2	4.8/5.3	1.2/2.3		6.4/6.6		
225 to 400	-3	3.4/3.9	1.8/3.3	0.111-	6.4/6.6	8.4/9.1	4.4/4.6
MHz	-4	2.4/2.8	3.1/4.5	2 kHz	6.2/6.7	7.6/9.0	4.7/5.1
	-5	2.0/2.2	4.4/6.3	1	5.8/6.0	6.5/6.9	5.0/5.2
	-2	4.8/5.5	1.4/2.3				
400 to 700	-3	3.4/3.9	2.3/3.6		5.8/6.3	6.8/7.5	4.8/5.1
MHz	-4	2.5/2.9	3.2/4.6	2 kHz	6.0/6.1	6.8/7.0	5.1/5.2
	-5	1.9/2.2	4.3/6.3		5.8/6.1	6.4/6.8	5.2/5.6
	-2	5.0/5.5	1.6/2.3		5.6/5.8	5.9/6.1	5.4/5.9
700 to 1000	-3			0.111-			
MHz	-4			2 kHz			
	-5	2.0/2.2	4.5/6.3	1	5.8/6.1	6.1/6.4	5.5/5.7

Mechanical Outline:

Pinout & Ratings:

	PARALLE	EL INTERFACE	
PIN # Reference Designator		Description	Maximum Ratings
1	A2	Parallel Bit 2	
2	A3	Parallel Bit 3	
3	A4	Parallel Bit 4	0 E to (/ . 0 E) V
4	A5	Parallel Bit 5	-0.5 to (V _{CC} + 0.5) V
5	A6	Parallel Bit 6	
6	A7	Parallel Bit 7	
7, 9, 11, 12	GND	Digital/RF Ground	-
8	Vcc	+5V Power Supply Input ±10%	-0.5 to +6 V
10	V _{BB}	High Bias +100V Supply Input	0 to +125 V
13	STB	Strobe	
14	A0	Parallel Bit 0	-0.5 to (V _{CC} + 0.5) V
15	A1	Parallel Bit 1	

	SERIAL INTERFACE					
PIN #	Reference Designator	Description	Maximum Ratings			
1	SDO	Serial Data Out	-0.5 to (V _{CC} + 0.5) V			
2-6	N/C	No Connect (1)	-			
7, 9, 11, 12 GND		Digital/RF Ground	-			
8 V _{CC}		+5V Power Supply Input $\pm 10\%$	-0.5 to +6 V			
10	V _{BB}	High Bias +100V Supply Input	0 to +125 V			
13 <u>STB</u>		Strobe				
14	SCLK	Serial Clock	-0.5 to (V _{CC} + 0.5) V			
15	SDI	SDI Serial Data In				

Note(s): 1. Leave pins disconnected for unit to function properly.

MAXI-POLE® Filters Product Number Guide:

Series	Frequency (MHz)	Insertion Loss (dB)	Connector Type	Options
	1.5-4			
	4-10			
	10-30	1		
	30-90	2	SMA (Female)	
MAXI	90-200	3		B C
	200-400	4		
	225-400	5		'
	400-700			
	700-1000			

Available Options: A. Internal DC-DC Converter (Eliminates need for high voltage supply. Requires additional 250 mA of 5 VDC current.)

- B. Serial Interface
- C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)
- F. Filtered D-connector

1. Options may be limited to particular frequency bands and/or configurations. Consult factory for your application. 2. Filters are aligned and tested using a High Bias of +100 VDC unless otherwise specified by the customer.

Example:

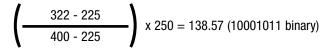
Note(s):

Product # MAXI-30-90-3-SMA

Interface & Control Options:

Frequency Tuning Address

There are 250 equally spaced tuning increments across each standard filter band, resulting in 251 tunewords from 00000000 to 11111010. The last 5 tunewords are reserved for housekeeping functions:


Tune Code	Result
00000000 thru 11111010	Lowest tuned frequency (251 total tune codes) Highest tuned frequency
111111011 thru 11111110	RF In/Out Isolation Filter Blanked
1111111	Power saver mode; all PIN diodes turned off

Calculating a Tune Address

The binary tuning word is determined by the following relationship:

tuneword =
$$\begin{pmatrix} F \text{ desired} - F \text{ low} \\ F \text{ high} - F \text{ low} \end{pmatrix} \times 250$$

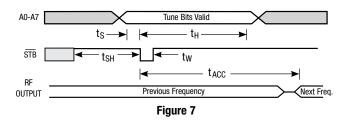
Example: If you wish to tune to 322 MHz using a 225 to 400 MHz filter, the tuneword is:

Note: Round off to the nearest decimal integer

Bias Voltage Requirement:

A bias voltage is required to reverse bias the PIN diodes used to tune the filter. Very little static current (less than 2 mA) is needed. A minimum of 30 Volts is recommended for proper filter operation. As this voltage is increased, the power handling capability and intermodulation are improved as shown below. A bias voltage of +100 VDC is recommended for best results, and all filters are tuned and aligned this way from the factory unless otherwise specified by the customer. An internal low EMI supply, powered from the +5 VDC input, is available as an option.

Interface Options:


The filter comes standard with an 8 bit parallel interface, although a serial interface can be specified as an option.

DC Control Interface Characteristics:

Symbol	Parameter	Condition	Minimum	Maximum	Units
VIL	Input Low Voltage	Control signals except A0-A7	0.0	0.2 Vcc	v
v _{IH}	Input High Voltage	Control signals except A0-A7	0.7 Vcc	Vcc	v
V _{IL1}	Input Low Voltage	A0-A7	0.0	0.15 Vcc	V
V _{IH1}	Input High Voltage	A0-A7	0.7 Vcc	Vcc	V

Switching Characteristics: ($Vcc = +5 VDC, \pm 10\%$; T = -40° to +85°C)

Symbol	Parameter	Minimum	Maximum	Units
ts	Setup Time, A0-A7 to STB	200		nS
t _H	Hold Time, A0-A7 from STB	6		μS
t _{SH}	STB High Time	25		μS
tw	STB Pulse Width	20		nS
t _{DW}	Strobe Dwell Time (from STB falling edge to next STB falling edge)	500		μS
t _{ACC}	Access Time from $\overline{\text{STB}}$ to f_0		15	μS

Strobe

The filter is tuned within 10 μ S (fo > 30 MHz, +10 dBm reference) to the frequency designated by the tuneword existing on the eight control bit lines when the STB line is brought low. Once strobed, data existing on the tune control lines is ignored until strobed again. Consult the Selection Guide on page 20 for the maximum strobe rate in each frequency band.

RF Power Handling Capability

The filters are designed to operate with RF input power levels up to 1 Watt (+30 dBm) in-band (see graphs on page 26). Signals in the filter stopband up to 5 Watts at the input will not cause damage to the filter.

Temperature Effects

Over the -40°C to +85°C temperature range, filters will exhibit a negative temperature drift of less than 80 PPM/°C, or a total of less than ±0.5% of the center frequency.

Data is believed to be accurate. All data is subject to change without notice.

MAXI/3 SERIES

Frequency Coverage:

Input/Output Impedance:

In-band Input/Output VSWR:

In-band RF Power Handling:

Outband RF Power Handling:

Center Frequency Drift:

Tuning Control:

Tuning Speed:

Size:

Weight:

RF Connection:

In-band Second Order Intercept Point:

In-band Third Order Intercept Point:

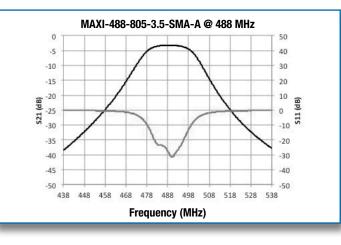
DC Power Consumption (Static):

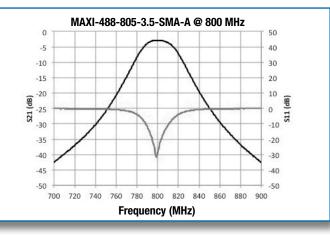
Shape Factor (30 dB / 3 dB):

Operating Temperature Range:

Specifications:

Information/Quote Requests: support@polezero.com


Tunable Bandpass Filters



The **MAXI/3** Series of tunable filters provides improved band rejection performance (over standard two pole MAXI series) in a slightly longer package. This tunable filter is optimized for size, RF power handling, low distortion and exceptional selectivity.

Performance:

The following plots illustrate approximate performance:

MAXI/3 Filters Product Number Guide:

	Series	Frequency (MHz)	Insertion Loss (dB)	Connector Type	Options
					Α
	MAXI/3	300-550 500-805	3 3.5	SMA (Female)	В
					С
					F

Available Options: A. Internal DC-DC Converter (Eliminates need for high

- voltage supply. Requires additional 250 mA of 5 VDC current.) B. Serial Interface
- C. Custom Frequency Bands (Specify START
- and STOP frequencies in MHz.)
- F. Filtered D-connector
- Note(s):
- Options may be limited to particular frequency bands and/or configurations. Consult factory for your application.
 Filters are aligned and tested using a High Bias of +100 VDC unless otherwise specified by the customer.
- Example: Product # MAXI-300-550-3-SMA-AF

Interface & Control Options:

Frequency Tuning Address

There are 250 equally spaced tuning increments across each standard filter band, resulting in 251 tunewords from 00000000 to 11111010. The last 5 tunewords are reserved for housekeeping functions:

Tune Code	Result
00000000 thru 11111010	Lowest tuned frequency (251 total tune codes) Highest tuned frequency
111111011 thru 11111110	RF In/Out Isolation Filter Blanked
1111111	Power saver mode; all PIN diodes turned off

Calculating a Tune Address

The binary tuning word is determined by the following relationship:

tuneword =
$$\begin{pmatrix} F \text{ desired} - F \text{ low} \\ \hline F \text{ high} - F \text{ low} \end{pmatrix} x 250$$

Example: If you wish to tune to 322 MHz using a 225 to 400 MHz filter, the tuneword is:

$$\begin{array}{c} 322 - 225 \\ \hline 400 - 225 \end{array} x 250 = 138.57 (10001011 \text{ binary})$$

Note: Round off to the nearest decimal integer.

300 to 805 MHz

1.3:1 typical

1 Watt (input)

5 Watt (input)

+100 dBm (input)

+5 VDC @ 125 to 750 mA

3.3 to 3.75 typical, 4.0 max.

 $1.5 \times 2.5 \times 4.3$ (in.) / $38.1 \times 63.5 \times 108$ (mm.)

+40 dBm (input)

-80 PPM/°C

8 bit parallel

-40°C to +85°C

11.2 oz. / 317.5 g.

SMA jack

< 25 µS

50Ω

Bias Voltage Requirement:

A bias voltage is required to reverse bias the PIN diodes used to tune the filter. Very little static current (less than 2 mA) is needed. A minimum of 30 Volts is recommended for proper filter operation. As this voltage is increased, the power handling capability and intermodulation are improved as shown below. A bias voltage of +100 VDC is recommended for best results, and all filters are tuned and aligned this way from the factory unless otherwise specified by the customer. An internal low EMI supply, powered from the +5 VDC input, is available as an option.

Interface Options:

The filter comes standard with an 8 bit parallel interface, although a serial interface can be specified as an option.

DC Control Interface Characteristics:

Symbol	Parameter	Condition	Minimum	Maximum	Units
VIL	Input Low Voltage	Control signals except A0-A7	0.0	0.2 Vcc	ν
v _{IH}	Input High Voltage	Control signals except A0-A7	0.7 Vcc	Vcc	v
V _{IL1}	Input Low Voltage	A0-A7	0.0	0.15 Vcc	V
V _{IH1}	Input High Voltage	A0-A7	0.7 Vcc	Vcc	V

Switching Characteristics: ($Vcc = +5 VDC, \pm 10\%$; T = -40° to +85°C)

Symbol	Parameter	Minimum	Maximum	Units
ts	Setup Time, A0-A7 to STB	200		nS
t _H	Hold Time, A0-A7 from STB	6		μS
tsн	STB High Time	25		μS
tw	STB Pulse Width	20		nS
t _{DW}	Strobe Dwell Time (from STB falling edge to next STB falling edge)	500		μS
t _{ACC}	Access Time from $\overline{\text{STB}}$ to f_0		15	μS

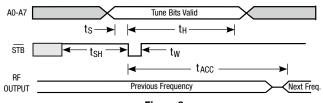
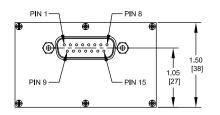


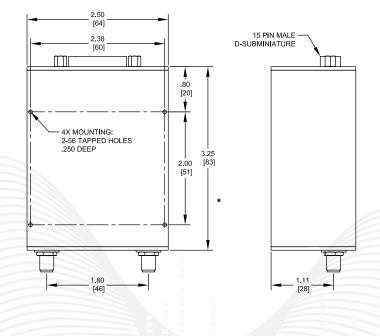
Figure 8

Strobe

The filter is tuned within 25 μS to the frequency designated by the tuneword existing on the eight control bit lines when the \overline{STB} line is brought low. Once strobed, data existing on the tune control lines is ignored until strobed again. Consult the MAXI-POLE® Selection Guide on page 20 for the maximum strobe rate in each frequency band.

RF Power Handling Capability


The filters are designed to operate with RF input power levels up to 1 Watt (+30 dBm) in-band (see graphs on page 26). Signals in the filter stopband up to 5 Watts at the input will not cause damage to the filter.


Temperature Effects

Over the -40°C to +85°C temperature range, filters will exhibit a negative temperature drift of less than 80 PPM/°C, or a total of less than $\pm 0.5\%$ of the center frequency.

MAXI/3 SERIES (Continued)

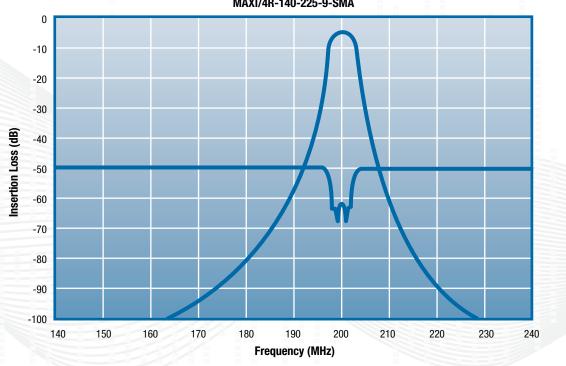
Mechanical Outline:

MAXI/3 SERIES Selection Guide:

Frequency Range	Suffix	% Bandwidth (3 dB)	Insertion Loss	Strobe Rate (max.)	SHA Overall	PE FACTOR (30 Low Side	dB) High Side
300 to 550 MHz	-3	5.5/5.9	2.3/3.5	2 KHz	3.7/4.0	3.4/3.6	4.0/4.3
500 to 805 MHz	-3.5	4.3/5.0	3.3/4.0	2 KHz	3.7/4.0	3.4/3.6	4.0/4.3

24

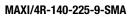
Pinout & Ratings:


PIN # Reference Designator		Description	Maximum Ratings	
1	A2	Parallel Bit 2		
2	A3	Parallel Bit 3		
3	A4	Parallel Bit 4	0.5 to // 0.5\V	
4	A5	Parallel Bit 5	-0.5 to (V _{CC} + 0.5) V	
5	A6	Parallel Bit 6		
6	A7	Parallel Bit 7]	
7, 9, 11, 12	GND	Digital/RF Ground	-	
8	Vcc	+5V Power Supply Input ± 10%	-0.5 to +6 V	
10	V _{BB}	High Bias +100V Supply Input	0 to +125 V	
13	STB	Strobe		
14	A0	Parallel Bit 0	-0.5 to (V _{CC} + 0.5) V	
15	A1	Parallel Bit 1		

The **MAXI/4R** Series of tunable filters provides 4-poles of filtering, for even better rejection than our standard MAXI-POLE® filters. The chassis has been ruggedized to better handle the vibration and shock environments often encountered in customer applications (ie. ground-mobile, airborne, etc.). The product line includes several standard designs in various frequencies to support almost any application.

Performance:

The following plot illustrates approximate performance (not representative of all frequency ranges):

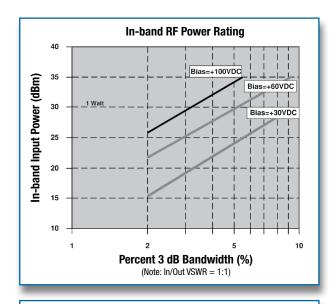


Data is believed to be accurate. All data is subject to change without notice.

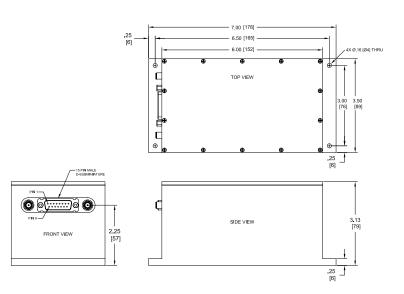
MAXI/4R SERIES

Specifications:

Frequency Coverage:	140 to 225 MHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical
In-band RF Power Handling:	1 Watt (input)
Outband RF Power Handling:	Up to 5 Watt
In-band Second Order Intercept Point:	+100 dBm (input)
In-band Third Order Intercept Point:	+40 dBm (input)
Center Frequency Drift:	-80 PPM/°C
Tuning Control:	8 bit parallel
Tuning Speed:	50 µS
DC Power Consumption (Static):	+5 VDC @ 20 to 1500 mA +100 VDC @ 2 mA
Shape Factor (30 dB / 3 dB):	3.3 to 3.75 typical
Operating Temperature Range:	-40°C to +85°C
Size: 3.1 × 3.5 × 7.0 (in.)	/ 79.4 × 91.4 × 177.8 (mm.)
Weight:	43.2 oz. / 1225 g. / 1.2 kg.
RF Connection:	SMA jack



Tunable Bandpass Filters


MAXI/4R SERIES (Continued)

Interface Options:

The filter comes standard with an 8 bit parallel interface, although a serial interface can be specified as an option.

Third Order Intercept Point 60 · Bias=+100VDC Bias=+60VDC 55 ار د اد با بها بها 50 -+--+ Bias=+30VDC | | (dBm) 45 ·⊢୷⊣⊣┽⊦ 40 ВЗ 1 1 1 1 1 1 1 35 1 30 25 10 20 Percent 3 dB Bandwidth (%)

Pinout & Ratings:

Mechanical Outline:

PARALLEL INTERFACE						
PIN #	Reference Designator	Description	Maximum Ratings			
1	A2	Parallel Bit 2				
2	A3	Parallel Bit 3				
3	A4	Parallel Bit 4	-0.5 to (V _{CC} + 0.5) V			
4	A5 Parallel Bit 5		-0.5 t0 (V _{CC} + 0.5) V			
5	A6	Parallel Bit 6				
6	A7	Parallel Bit 7				
7, 9, 11, 12	GND	Digital/RF Ground	-			
8	V _{CC}	+5V Power Supply Input $\pm 10\%$	-0.5 to +6 V			
10	V _{BB}	High Bias +100V Supply Input	0 to +125 V			
13	STB	Strobe				
14	AO	Parallel Bit 0	-0.5 to (V _{CC} + 0.5) V			
15	A1	Parallel Bit 1				

SERIAL INTERFACE						
PIN #	Reference Designator	Description	Maximum Ratings			
1	SDO	Serial Data Out	-0.5 to (V _{CC} + 0.5) V			
2-6	N/C	No Connect (1)	—			
7, 9, 11, 12	GND	Digital/RF Ground	—			
8	V _{cc}	+5 V Power Supply Input ±10%	-0.5 to +6 V			
10	V _{BB}	High Bias +100 V Supply Input	0 to +125 V			
13	STB	Strobe				
14	SCLK	Serial Clock	-0.5 to (V _{CC} + 0.5) V			
15	SDI	Serial Data In				

Note(s): 1 Leave pins disconnected for unit to function properly.

MAXI/4R Filters Product Number Guide:

Series	Frequency (MHz)	Insertion Loss (dB)	Connector Type	Option
				Α
	140.005	0	CMA (Formala)	В
MAXI/4R	140-225	9	SMA (Female)	С
				F

Available Options: A. Internal DC-DC Converter (Eliminates need for high voltage

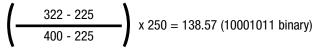
- supply. Requires additional 250 mA of 5 VDC current.)
- B. Serial Interface
- C. Custom Frequency Bands (Specify START
- and STOP frequencies in MHz.) F. Filtered D-connector
- Note(s): 1. Option:
 - Options may be limited to particular frequency bands and/or performance levels. Consult factory for your application
 Filters are aligned and tested using a High Bias of +100 VDC unless otherwise specified by the customer.

Example: Product # MAXI/4R-140-225-9-SMA

Interface & Control Options:

Frequency Tuning Address

MAXI-POLE[®] Series filters utilize an 8 bit scheme for tunewords to digitally control tuning of the center frequency. There are 250 equally spaced tuning increments across each standard filter band, resulting in 251 tunewords from 00000000 to 11111010. The last 5 tunewords are reserved for housekeeping functions:


Tune Code	Result
00000000 thru 11111010	Lowest tuned frequency (251 total tune codes) Highest tuned frequency
111111011 thru 11111110	RF In/Out Isolation Filter Blanked
1111111	Power saver mode; all PIN diodes turned off

Calculating a Tune Address

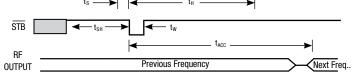
The binary tuning word is determined by the following relationship:

Example: If you wish to tune to 322 MHz using a 225 to 400 MHz filter, the tuneword is:

Note: Round off to the nearest decimal integer.

ons

Bias Voltage Requirement:


A bias voltage is required to reverse bias the PIN diodes used to tune the filter. Very little static current (less than 2 mA) is needed. A minimum of 30 Volts is recommended for proper filter operation. As this voltage is increased, the power handling capability and intermodulation are improved as shown on the right. A bias voltage of +100 VDC is recommended for best results, and all filters are tuned and aligned this way from the factory unless otherwise specified by the customer. An internal low EMI supply, powered from the +5 VDC input, is available as an option.

DC Control Interface Characteristics:

1.	Symbol Parameter		Condition	Minimum	Maximum	Units
	v _{IL}	Input Low Voltage	Control signals except A0-A7	0.0	0.2 Vcc	۷
	VIH	Input High Voltage	Control signals except A0-A7	0.7 Vcc	Vcc	۷
	V _{IL1}	Input Low Voltage	A0-A7	0.0	0.15 Vcc	V
	V _{IH1}	Input High Voltage	A0-A7	0.7 Vcc	Vcc	V

Switching Characteristics: (Vcc = +5 VDC, $\pm 10\%$; T = -40° to $+85^{\circ}$ C)

Symbol	Parameter	Minimum	Maximum	Units			
ts	Setup Time, A0-A7 to STB	100		nS			
t _H	Hold Time, A0-A7 from STB	6		μS			
t _{SH}	STB High Time	25		μS			
tw	STB Pulse Width	100		nS			
t _{DW}	Strobe Dwell Time (from STB falling edge to next STB falling edge)	500		μS			
t _{ACC}	Access Time from $\overline{\text{STB}}$ to f_0		50	μS			
A0-A7							

Strobe

The filter is tuned within 50 μ S to the frequency designated by the tuneword existing on the eight control bit lines when the STB line is brought low. Once strobed, data existing on the tune control lines is ignored until strobed again. Consult the MAXI-POLE® Selection Guide on page 20 for the maximum strobe rate in each frequency band.

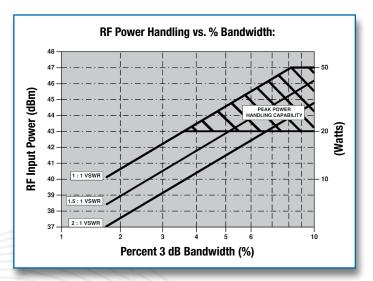
RF Power Handling Capability

The filters are designed to operate with RF input power levels up to 1 Watt (+30 dBm) in-band (see graphs on page 26). Signals in the filter stopband up to 5 Watts at the input will not cause damage to the filter.

Temperature Effects

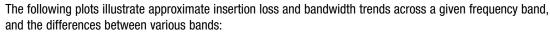
Over the -40°C to +85°C temperature range, filters will exhibit a negative temperature drift of less than 80 PPM/°C, or a total of less than $\pm 0.5\%$ of the center frequency.

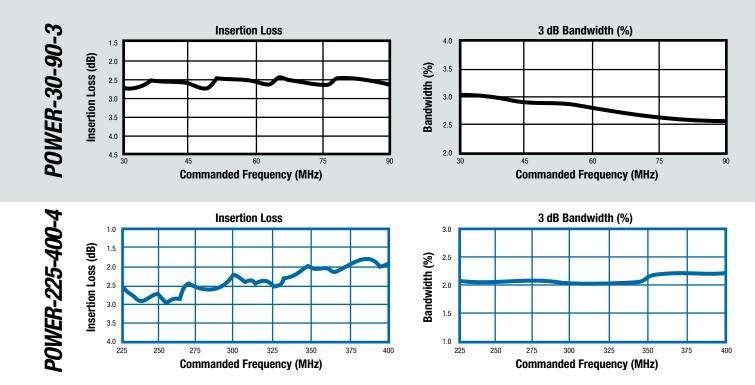
Information/Quote Requests: support@polezero.com


The **POWER-POLE®** Series of tunable filters provides improved RF performance with increased power handling capability and the lowest insertion loss for a given bandwidth. The product line includes several standard designs in various frequencies to support almost any application.

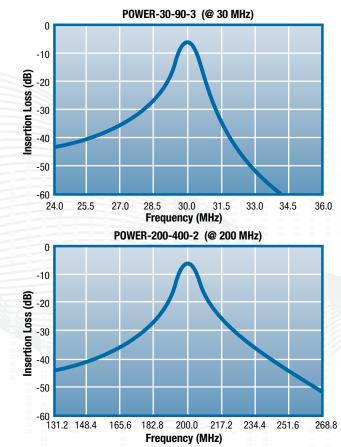
POWER-POLE® SERIES

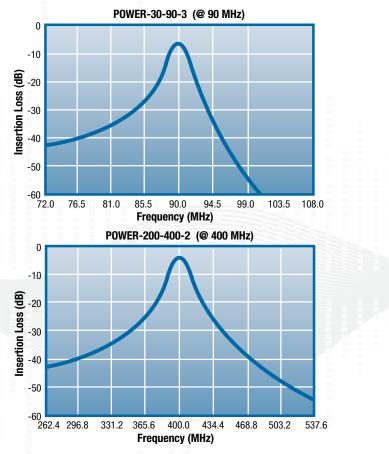
Specifications:


Frequency Coverage (Multiple Band	is): 30 to 400 MHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical
In-band RF Power Handling:	refer to chart below
Outband RF Power Handling:	Up to 20 Watt
In-band Second Order Intercept Point:	+100 dBm (input)
In-band Third Order Intercept Point:	+50 dBm (input)
Center Frequency Drift:	-80 PPM/°C
Tuning Control:	8 bit parallel
Tuning Speed:	15 μS*
DC Power Consumption (Static):	+5 VDC @ 400 mA to 1.5 A
Shape Factor (30 dB / 3 dB):	6 typical
Operating Temperature Range:	-40°C to +65°C
Size: 2.6 × 3.0 × 4.0 (in.) /	66.7 × 76.2 × 101.6 (mm.)
Weight:	18.7 oz. / 530.1 g. / .5 kg.
RF Connection:	SMA jack


* 15 µS typical for UHF band filters. Consult factory for details on other bands.

Important Application Notes:


- · While changing RF center frequencies, RF input power must be reduced to < +20 dBm. These filters will not support "Hot RF Switching Conditions". Please contact the factory in regards to custom features.
- Maximum strobe rate is 2 kHz; Actual rate is dependent upon frequency band.



Performance:

The following plot illustrates approximate performance (not representative of all frequency ranges):

Tunable Bandpass Filters

POWER-POLE® SERIES Selection Guide:

Frequency Range	Suffix	% Bandwidth (3 dB)	Insertion Loss	Strobe Rate (max.)	SHA Overall	APE FACTOR (30 Low Side	dB) High Side
	-1	8.4/9.5	0.8/1.2				
	-2	4.3/4.8	1.6/2.4		6.9/7.6	9.3/10.4	4.5/4.7
30 to 90 MHz	-3	2.8/3.2	2.9/4.3	900 Hz	6.0/6.9	7.0/8.9	5.0/5.8
11112	-4	2.2/2.5	3.4/4.6				
	-5	1.8/1.9	4.4/5.8				
	-1	8.6/9.2	0.8/1.2		6.0/6.5	7.5/8.3	4.6/4.7
	-2	4.2/4.8	1.2/2.3				
90 to 200 MHz	-3	2.7/3.2	2.2/3.5	2 KHz			
11112	-4	2.2/2.5	3.3/5.0				
	-5	1.8/2.0	4.0/5.5				
	-1						
200 to	-2	4.2/4.8	1.3/2.2		5.6/6.1	6.4/7.0	4.8/5.3
400	-3	2.7/3.1	1.7/3.5	2 KHz			
MHz	-4	2.2/2.5	2.4/3.8				
	-5						
	-1	8.2/9.1	0.6/0.9		5.8/6.0	7.0/7.3	4.6/4.7
225 to	-2	4.2/4.8	1.0/2.2				
400	-3	2.7/3.1	1.7/3.2	2 KHz			
MHz	-4	2.1/2.5	2.3/3.8		5.7/6.3	6.1/7.0	5.3/5.7
	-5	1.8/2.0	2.5/4.2		5.9/6.2	6.4/6.2	5.4/5.8

This Selection Guide illustrates approximate performance for the **POWER-POLE®** Series: Table values are shown as average/maximum. **Pinout & Ratings:**

PARALLEL INTERFACE					
PIN #	Reference Designator	Description	Maximum Ratings		
1	A2	Parallel Bit 2			
2	A3	Parallel Bit 3			
3	A4	Parallel Bit 4	0.5 to (/ . 0.5) //		
4	A5	Parallel Bit 5	-0.5 to (V _{cc} + 0.5) V		
5	A6	Parallel Bit 6			
6	A7	Parallel Bit 7			
7, 9, 11, 12	GND	Digital/RF Ground	—		
8	V _{cc}	+5 V Power Supply Input ±10%	-0.5 to +6 V		
10	N/C	No Connect (1)	—		
13	STB	Strobe			
14	A0	Parallel Bit 0	-0.5 to (V _{cc} + 0.5) V		
15	A1	Parallel Bit 1			

Note(s): 1 Leave pins disconnected for unit to function properly.

SERIAL INTERFACE				
PIN #	Reference Designator	Description	Maximum Ratings	
1	SDO	Serial Data Out	0 to +6 VDC	
2-6, 10	N/C	No Connect (1)	—	
7, 9, 11, 12	GND	Digital/RF Ground	—	
8	Vcc	+5 V Power Supply Input $\pm 10\%$	-0.5 to +6 V	
13	STB	Strobe		
14	SCLK	Serial Clock	-0.5 to (V _{CC} + 0.5) V	
15	SDI	Serial Data In		

O

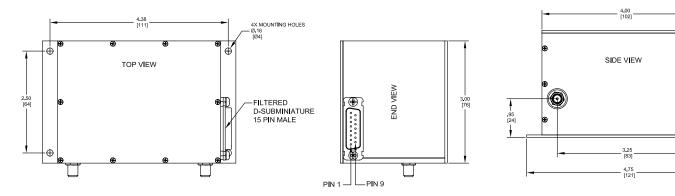
Note(s): 1 Leave pins disconnected for unit to function properly.

POWER-POLE® Filters Product Number Guide:

Series	Frequency (MHz)	Insertion Loss (dB)	Connector Type	Option
POWER	30-90 90-200 200-400 225-400	1 2 3 4 5	SMA (Female)	B C

Available Options: B. Serial Interface

	C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)
Note(s):	Options may be limited to particular frequency bands and/or configurations. Consult factory for your application.
Example:	Product # POWER-90-200-3-SMA


Interface & Control Options:

Frequency Tuning Address

There are 250 equally spaced tuning increments across each standard filter band, resulting in 251 tunewords from 00000000 to 11111010. The last 5 tunewords are reserved for housekeeping functions:

Tune Code	Result
00000000 thru 11111010	Lowest tuned frequency (251 total tune codes) Highest tuned frequency
111111011 thru 11111110	RF In/Out Isolation Filter Blanked
1111111	Power saver mode; all PIN diodes turned off

Mechanical Outline:

Calculating a Tune Address

The binary tuning word is determined by the following relationship:

tuneword =
$$\left(\frac{F \text{ desired} - F \text{ low}}{F \text{ high} - F \text{ low}} \right) \times 250$$

Example: If you wish to tune to 322 MHz using a 225 to 400 MHz filter, the tuneword is:

.

$$\begin{array}{c|c} 322 - 225 \\ \hline 400 - 225 \end{array} x 250 = 138.57 (10001011 \text{ binary})$$

Note: Round off to the nearest decimal integer.

.

Tunable Bandpass Filters

Interface Options:

ns

The filter comes standard with an 8 bit parallel interface, although a serial interface can be specified as an option.

DC Control Interface Characteristics:

Symbol	Parameter	Condition	Minimum	Maximum	Units
V _{IL}	Input Low Voltage	Control signals except A0-A7	0.0	0.2 Vcc	v
v _{IH}	Input High Voltage	Control signals except A0-A7	0.7 Vcc	Vcc	v
V _{IL1}	Input Low Voltage	A0-A7	0.0	0.15 Vcc	V
V _{IH1}	Input High Voltage	A0-A7	0.7 Vcc	Vcc	V

Switching Characteristics: ($Vcc = +5 VDC, \pm 10\%$; T = -40° to +85°C)

Symbol	Parameter	Minimum	Maximum	Units
ts	Setup Time, A0-A7 to STB	600		nS
t _H	Hold Time, A0-A7 from STB	2.5		μS
t _{SH}	STB High Time	25		μS
tw	STB Pulse Width	600		nS
t _{DW}	Strobe Dwell Time (from STB falling edge to next STB falling edge)	500		μS
t _{ACC}	Access Time from $\overline{\text{STB}}$ to f_0		15*	μS

* 15 µs typical for UHF band filters. Consult factory for details on other bands.

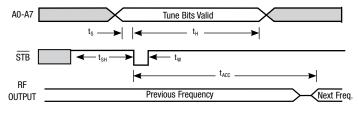


Figure 10

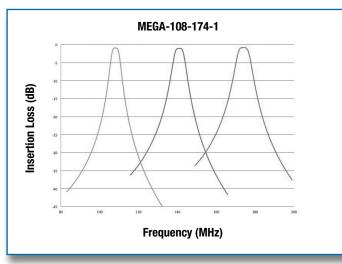
Strobe

The filter is tuned within $15 \ \mu$ S to the frequency designated by the tuneword existing on the eight control bit lines when the $\overline{\text{STB}}$ line is brought low. Once strobed, data existing on the tune control lines is ignored until strobed again. Maximum strobe rate is 2 kHz; Actual rate is dependent upon frequency band.

Temperature Effects

Over the -40°C to +65°C temperature range, filters will exhibit a negative temperature drift of less than 80 PPM/°C, or a total of less than \pm 0.5% of the center frequency.

The **MEGA-POLE®** filter series covers the standard frequency bands within the 30 to 450 MHz range with VHF-L, VHF-H or UHF versions. This new filter series provides excellent selectivity while maintaining very low insertion loss. The product line also has exceptional RF power handling capability with a high third order intercept point. The MEGA-POLE® filter series can be used for transmitter applications to reduce power amplifier noise, harmonics and intermodulation products, to provide bi-directional filtering directly at a transceiver's antenna port, or other applications requiring extremely linear, high power RF bandpass filtering. It has been designed for rugged environments per MIL-STD-810.

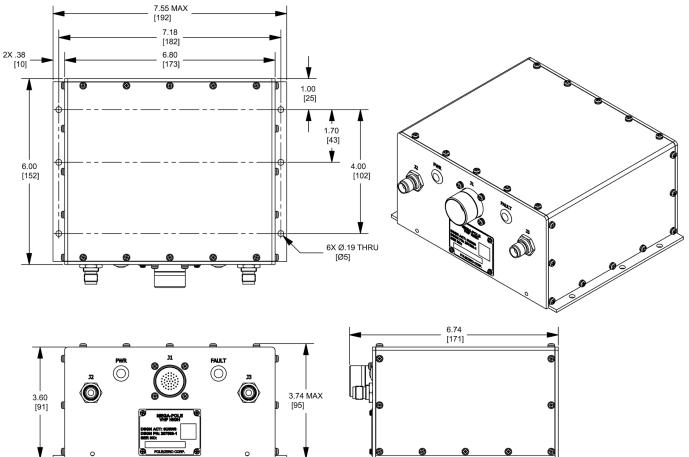

MEGA-POLE® SERIES

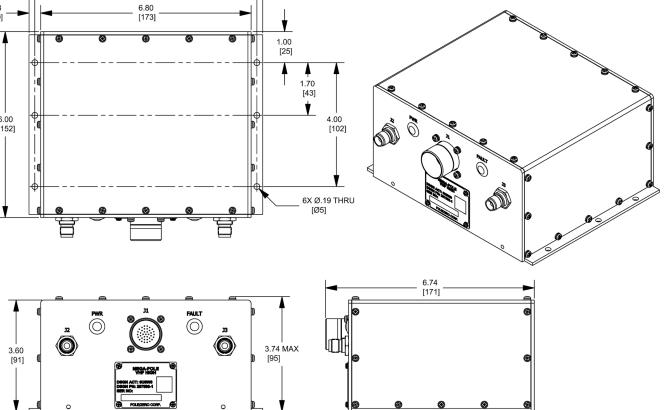
Specifications:

Frequency Covera	ge (VHF-L, V	HF-H or UHF):	30 to 450 MHz
Input/Output Imped	ance:		50Ω
In-band RF Power H	landling:		50 W average
			100 W peak
In-band Third Order	Intercept:		> +60 dBm
Tuning Control:	Fle	xible control de	sign for ARC-210
	and VHF-4	000. Standard o	options available.
Tuning Speed:			$< 25 \ \mu s \ typical$
	Suppor	ts frequency hop	oping waveforms
DC Power:		+28 VDC, < 1	A, MIL-STD-704
Center Frequency S	tability:	Interna	Illy compensated
Shape Factor (30 d	B / 3 dB):	3	.3 to 3.75 typical
Operating Temperat	ture Range:		-40°C to +55°C
Size:	6 × 7.55 × 3	3.6 (in.) / 152 ×	190 × 91 (mm.)
Available Finishes:		Chem-Film	per MIL-C-5541
		CA	ARC Tan or Green
			ess Grey or Black
		avai	lable on request.
RF Connection:			TNC jack

Performance:

The following plots illustrate approximate performance (not representative of all frequency ranges):


MEGA-POLE® Filters Product Number Guide:


Series	Frequency (MHz)	Insertion Loss	Connector Type	Option
	30-88*			
MEGA	108-174	1-1.5 dB	TNC (Female)	С
	225-400			

Available Options: C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)

Note(s): Options may be limited to particular frequency bands and/or performance levels. Consult factory for your application. * Preliminary

Mechanical Outline:

Tunable Bandpass Filters

Enhance the performance of your transceiver in frequency hopping cosite applications through use of the direct radio interface connection to the MEGA-POLE®.

MEGA-POLE® is available in multiple frequency bands with potential customizations:

- additional poles for sharper selectivity
- expanded frequency range or multi-band solutions
- size/selectivity trade-offs for small form factors

Pinout & Ratings:

The **HF-ERF™** is an internally switched 3-band, low cost, miniature, high performance tunable filter. The **HF-ERF™** was designed to have the best insertion loss and Q in the smallest package possible.

The size is 2.0" x 2.78" x 0.6" (50.8 mm x 70.61 mm x 15.24 mm). All **HF-ERFTM** filters are fully tested and aligned by Pole/Zero[®] for convenience and ease of use. Both SPI and Parallel control interfaces are available in one filter. Modified variants are available upon request.

HF-ERF[™] SERIES (S13)

Specifications:

Frequency Coverage:	1 to 30 MHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical
In-band RF Power Handling (input):	24 dBm typical
Outband RF Power Handling:	33 dBm
In-band Third Order Intercept:	+34 dBm typical
Center Frequency Drift:	55 PPM/°C typical
Tuning Control:	Parallel or Serial
Tuning Speed:	85 µs typical
DC Power Consumption (Static):	
+5 DC	190 mA typical
+100V DC	1.5 mA typical
Shape Factor (30 dB / 3 dB):	6 + 0.5 typical, 7 maximum
Operating Temperature Range:	-40°C to +85°C
Size: 2.0 × 2.78 × 0.6 (in.) /	50.8 × 70.61 × 15.24 (mm.)
Weight:	1.5 oz. / 43 g.
RF Connection:	Surface Mount

HF-ERF[™] (G3) Product Number Guide:

Series	Frequency (MHz)	% Bandwidth (3 dB)	Connector Type	Options
MN	1.5 - 30	3	S13	C017 (+24VDC V _{BB})

Note(s):Options may be limited to particular frequency bands
and/or configurations. Consult factory for your application.Example:Product # MN-1.5-30-3-S13 or MN-1.5-30-3-S13-C017

Interface & Control Options:

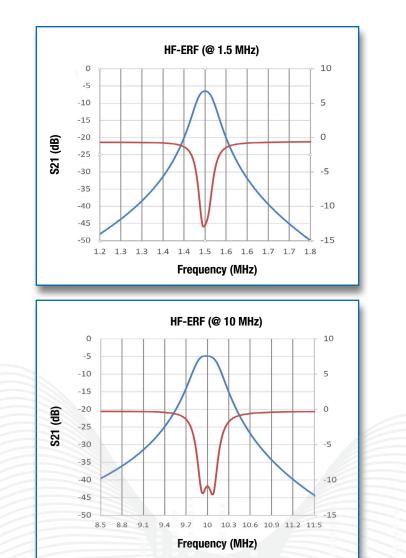
General Information

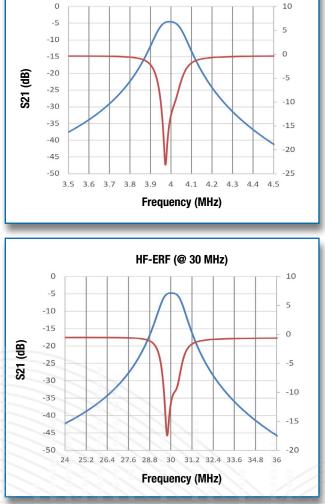
The **HF-ERF™** (S13) requires two supply voltages: a +5 VDC analog supply and a +100 VDC supply. These supply voltages should be adequately filtered as noise present on these pins will influence the RF signal purity. Digital Logic control signals can be anything from 1.2V to 5.5V and is set by the V_{CCD} line.

Digital Interface Information

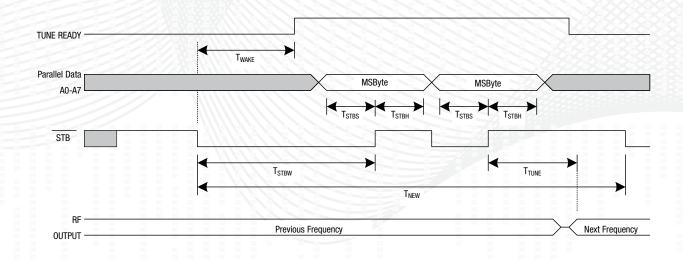
The digital interface format can be either SPI serial or parallel depending on the state of the SER/PAR pin.

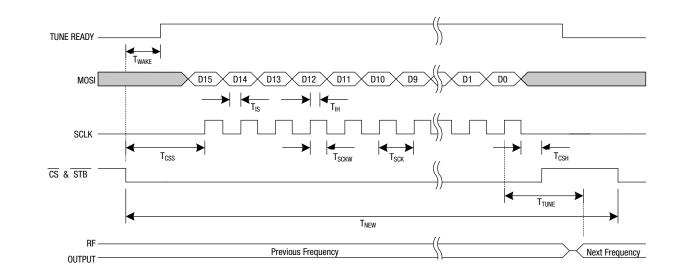
PIN #	Reference Designator	Description
1	SER/PAR	Serial/Parallel Command Interface Selection – Leaving SER/PAR floating or pulled to Vcc will enable the SPI (serial) tune command inter- face. Keeping SER/PAR pulled to GND will enable the parallel tune command interface. A power cycle is required to change modes. (This pin is internally pulled to V _{CC} with a 10 kΩ resistor.)
2	TUNE READY	Tune Ready Indicator – This pin normally remains low. When \overline{CS} and/or \overline{STB} is taken low to initiate a tune in either SPI or Parallel tune modes, the TUNE READY pin transitions high to indicate the filter is ready to receive the SPI or Parallel data. After data has been shifted in via the tune interface, the TUNE READY pin will transition back low indicating that the tune process is finished.
3	V _{CCD}	Digital Interface Supply – Used to set the HF-ERF TM digital interface logic voltage level between 1.2 V and 5 V. If using 5 V logic to control the HF-ERF, V _{CCD} should be +5 V, if using 3.3 V logic to control the HF-ERF TM , V _{CCD} should be +3.3 V, etc.
	A7	Parallel Data A7 (MSB) – In Parallel interface mode, data is latched on the rising edge of STB and indicates which frequency the filter should tune to (A7 = MSb, A0 = LSb).
4		(This pin is internally pulled to V _{CC} with a 10 k Ω resistor.)
4	MOSI	Serial Tune Interface Master Output Slave Input – Data is applied to MOSI for transferring a tune command to the device. Each bit of data is latched on the rising edge of SCLK. The filter accepts tune command lengths of 16-bits.
	initial	(This pin is internally pulled to V_{CC} with a 10 $k\Omega$ resistor.)
F	46	Parallel Data A6.
5	A6	(This pin is internally pulled to V _{CC} with a 10 k Ω resistor.)
	45	Parallel Data A5.
0	A5	(This pin is internally pulled to V _{CC} with a 10 k Ω resistor.)
6	COL //	Serial Tune Interface Clock – SCLK is used to clock in the tune word. Data is latched on the rising edge of SCLK.
	SCLK	(This pin is internally pulled to V _{CC} with a 10 k Ω resistor.)
7		Parallel Data A4.
	A4	(This pin is internally pulled to V _{CC} with a 10 k Ω resistor.)
		Serial Tune Interface Chip Select – The master transmits logic '0' for the desired filter using the chip select line. When $\overline{\text{CS}}$ is taken low, the control circuitry wakes up and the filter is ready for a new tune command. When the entire tune word has been loaded into the filter $\overline{\text{CS}}$ is taken high to indicate the tune command is complete.
	CS	For proper operation in Serial mode, tie this pin directly to $\overline{\text{STB}}$ (pin 12).
		(This pin is internally pulled to Vcc with a 10 $k\Omega$ resistor.)
0.11	40.40	Parallel Data pins A3 (pin 8), A2 (pin 9), A1 (pin 10), and A0 (pin 11).
8-11	A3-A0	(These pins are internally pulled to Vcc with a 10 $k\Omega$ resistor.)
		In Serial interface mode – $\overline{\text{STB}}$ wakes the controller circuitry on a low transition.
		For proper operation in SPI mode, tie this pin directly to $\overline{\text{CS}}$ (pin 7).
12	STB	In Parallel interface mode, when STB is taken low, the control circuitry wakes up and data is ready to be sent on A7-A0. When STB is transitione high, the MSB of parallel data is latched. STB should be taken low again while the LSB is loaded on the data port. When STB is transitioned hig for the second time, the LSB of parallel data is latched and the filter is commanded to the frequency specified by the parallel data interface.
		(This pin is internally pulled to V_{CC} with a 10 $k\Omega$ resistor only when used in parallel mode.)
13	V _{CC}	Supply Voltage Input: 4.75 V \leq V _{CC} \leq 5.25 V.
14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35	GND	Digital and Analog Ground.
15	V _{BB}	High Bias Supply Voltage Input: See filter version for optimum performance characteristics.
20, 32	RF IN/OUT	RF Signal Input or Output.
36, 37	NC	No Connect – Factory use only pins. Shorting or connecting these pins may affect the performance and functionality of the filter. Leave these pins floating.

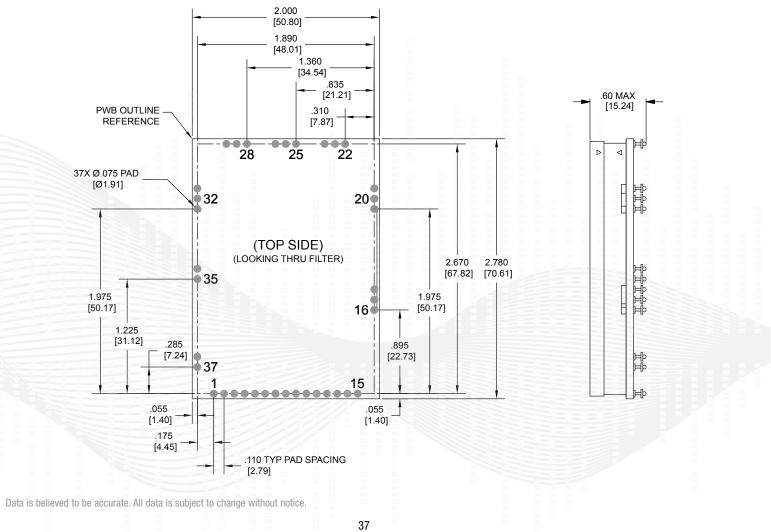

HF-ERF (@ 4 MHz)


HF-ERF Extended Range Filters

Performance:


The following plots illustrate approximate performance (not representative of all frequency ranges)


Serial Timing Diagram:



Parallel Timing Diagram:

Mechanical Outline:

The **NANO-ERF®** is an internally switched multi-band, low-cost, miniature, high-performance tunable filter. The **NANO-ERF®** was designed to have the smallest possible dimensions while maintaining suitable electrical performance. The **NANO-ERF**[®] is 1.1" x 1.1" x 0.216". All filters are fully tested and aligned by Pole/Zero for convenience and ease of use. The NANO-ERF® uses an SPI tune interface.

NANO-ERF[®] SERIES

Specifications:

Frequency Coverage:	30 to 520 MHz
Input/Output Impedance:	50Ω , nominal
In-band Input/Output VSWR:	1.5:1 typical, 2.2:1 max.
In-band RF Power Handling:	+6 dBm (input) typical
Outband RF Power Handling:	+20 dBm @ ± 15%
In-band Second Order Intercept P	oint: +70 dBm (input) typical
In-band Third Order Intercept Poir	t: +16 dBm (input) typical
Center Frequency Drift:	180 PPM/°C typical
Tuning Control:	Serial
Tuning Speed:	25 µsec typical, 35 µsec max.
DC Power Consumption (Static): Additional 15 mA	+3.3 VDC @ 15 mA typical during tuning interval (15 μsec)
Shape Factor (30 dB / 3 dB):	6 ± 0.5 typical, 8 max.
Operating Temperature Range:	-40°C to +85°C
Size: 1.10 × 1.10 × 0.2	216 (in.) / 28 × 28 × 5.5 (mm.)
Weight:	.2 oz. / 6 g.
RF Connection:	SMT castellation

Pinout & Ratings:

Pin #	Reference Designator	Description	Maximum Ratings
1, 3, 5, 6, 10, 18, 19	N/C	No Connect,	_
2	SCLK	Serial Clock	0.5 to (/0.5) //
4	CS	Chip Select	-0.5 to (V _{cc} + 0.5) V
7	TUNE READY	Tune Ready Output	—
8	V _{cc}	+3.3 V Power Supply Input	-0.3 to 3.6 V
9	GND	Power Supply Ground	—
11, 13, 14, 16	GND	RF Ground	—
12, 15	RF I/0	RF Input/Output	+6 dBm, +20 dBm ₂
17	GND	Digital Ground	_
20	MOSI	Master Output, Slave Input	-0.5 to (V _{cc} + 0.5) V

Note(s): 1 Leave floating for unit to function properly.

2 First number indicates maximum in-band power levels and second number indicates maximum out of band RF power levels either in CW or composite average for multi-tones.

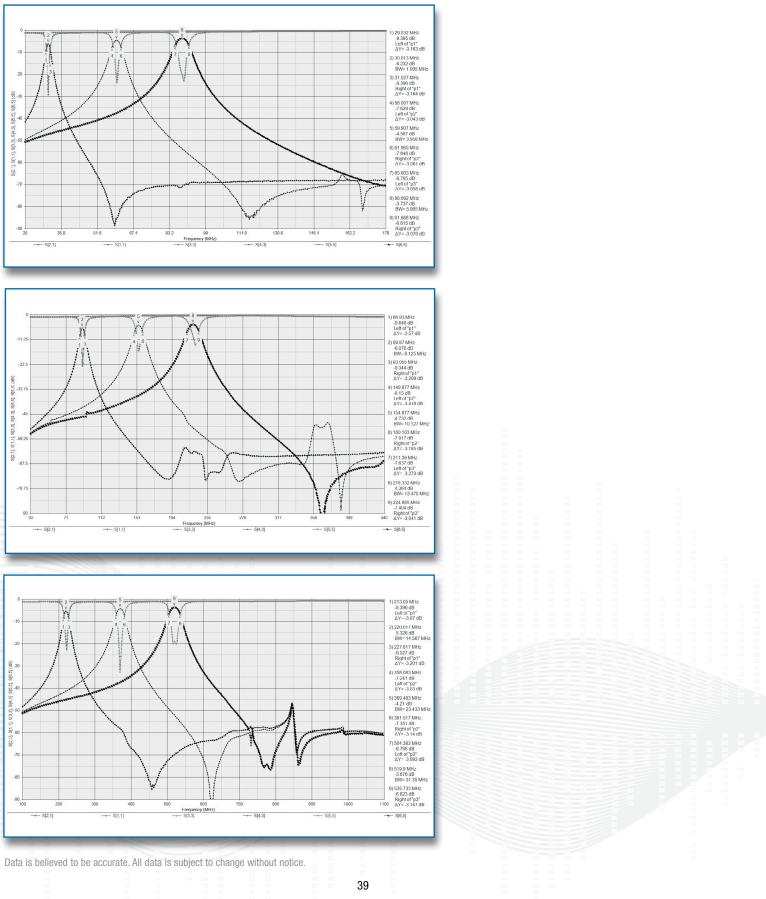
NANO-ERF® Product Number Guide:

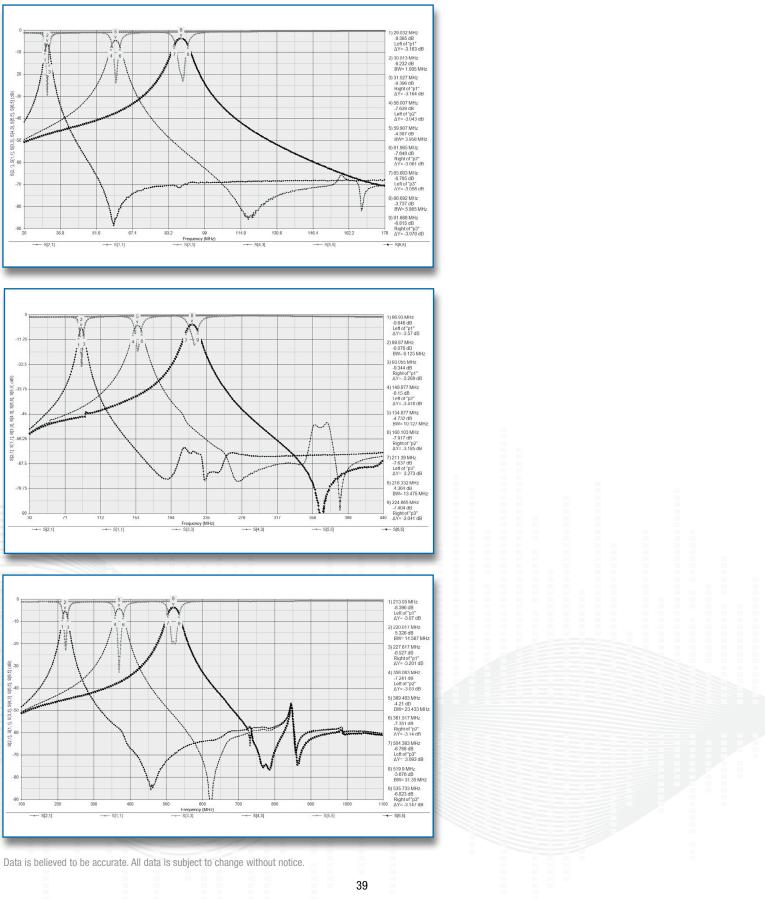
-	Series	Frequency (MHz)	Bandwidth (3 dB)	Connector Type	
	NN	30-520	6	000	ľ
	NN		10	S06	ŀ

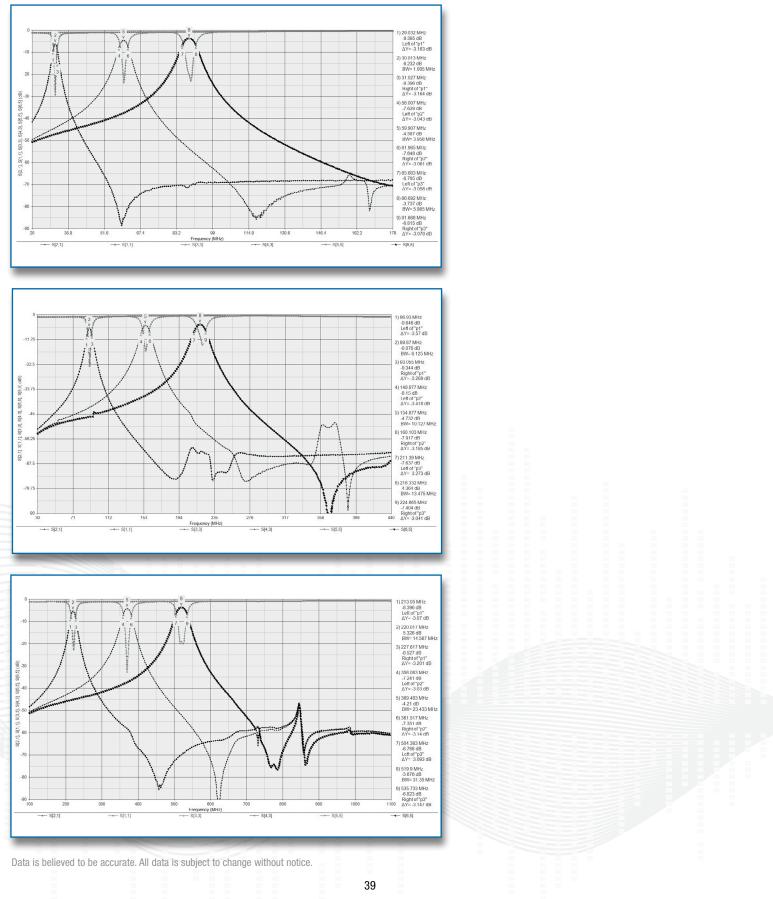
Note(s):	Options may be limited to particular frequency bands and/or configurations. Consult factory for your application.		
	Part number example 6%: NN-30-520-6-S06		
Example:	Product # NN-30-520-10-S06		

Interface & Control Options:

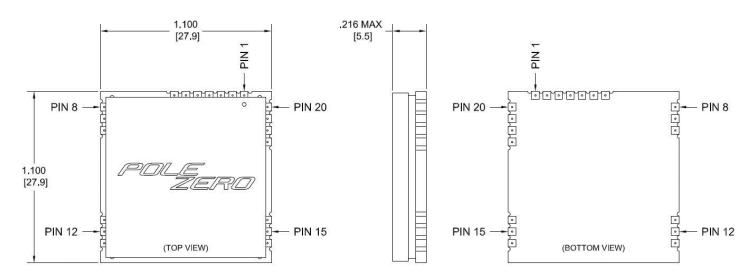
General Information


The NANO-ERF® tunable filter requires a +3.3 VDC supply. This supply voltage must be adequately filtered as noise present on this pin will directly influence the RF signal purity.


Digital Interface Information


The digital interface format is SPI. All data input pins are data bus capable of 3.3 V logic levels.

The following plots illustrate approximate performance:



Extended Range Filters

NANO-ERF[®] SERIES (Continued)

Mechanical Outline:

The **MINI-ERF**[®] is a low-cost, miniature, high-performance tunable band pass filter. The MINI-ERF® uses PIN diodes to deliver high dynamic range while fitting in a 1.75" x 2.40" x 0.387" package. Serial or parallel tuning interfaces are selectable. All **MINI-ERF®** filters are fully tuned and tested by POLE/ZERO® for convenience and ease of use.

MINI-ERF[®] (S04) SERIES

Specifications:

Frequency Coverage:	30 to 520 MHz	MINI-ERF®	(S04) Product N	lumber Guide:	
Input/Output Impedance:	50Ω	Series	Frequency (MHz)	% Bandwidth (3 dB)	Package
In-band Input/Output VSWR:	1.5:1 typical, 2.2:1 max.	MN	30-520	4	S04
In-band RF Power Handling:	1 Watt (input)			7	
Outband RF Power Handling:	Up to 2 Watts (input)	Note(s):		ed to particular frequency I	
In-band Second Order Intercept Point	:: +90 dBm	Example:	Product # MN-30-520	t the factory for your appli 0-4-S04	cation.
In-band Third Order Intercept Point:	+40 dBm (input)				
Center Frequency Drift:	-90 PPM/ºC				
Tuning Control:	Parallel or Serial				
Tuning Speed:	15 µsec typical @ 0 dBm*				
DC Power Consumption (Static):	+3.3 VDC @ 200 mA max. +100 VDC @ 2.5 mA max.		& Control Option	S:	
Shape Factor (30 dB / 3 dB):	6 ± 0.5 typical, 7.2 max.	General Info			
Operating Temperature Range:	-40°C to +85°C			wo supply voltages: a upply. These supply v	
Size: $2.40 \times 1.75 \times .385$	(in.) / 61 × 44.5 × 9.8 (mm.)				
Weight: 30 g. typical / 1.0			purity. Frequency co	ontrol signals are 3.3	V logic
RF Connection:	SMT castellation	level only.			

* Contact factory for details.

Note: Out of band power refers to signals at least 10% removed from the tuned center frequency.

Pinout & Ratings:

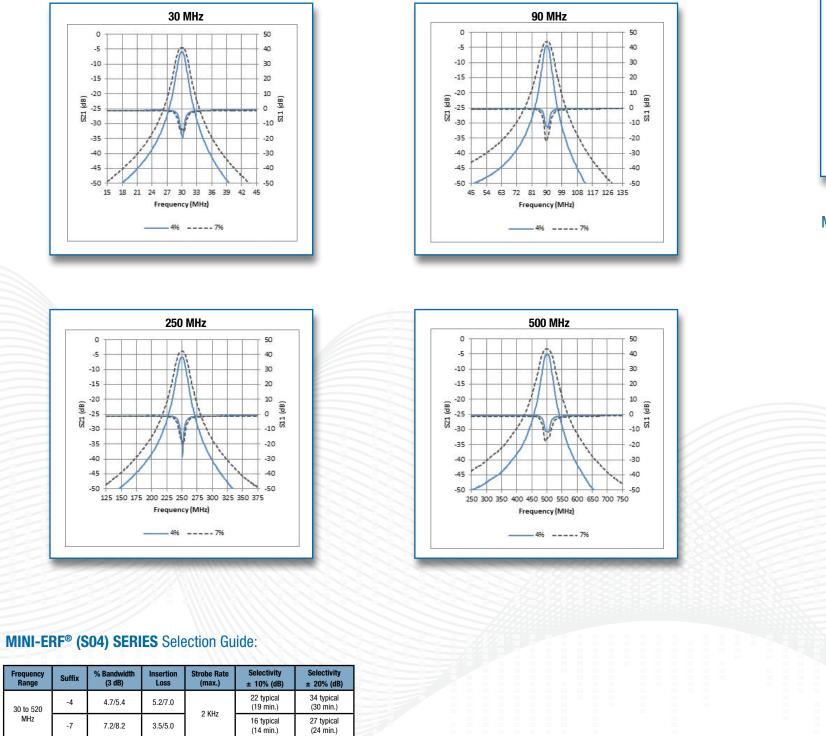
Pin #	Reference Designator	Description	Maximum Ratings
1	V _{cc}	+3.3 V Power Supply Input \pm 5%	-0.3 to +4 V
2, 17, 19-21, 23, 24, 26-28	GND	Digital/RF Ground	_
3, 4	N/C	No Connect ₁	—
5	A7/MOSI	Parallel Bit 7 Master Output, Slave Input	
6	A6	Parallel Bit 6	
7	A5/SCLK	Parallel Bit 5, Serial Clock	
8	A4/CS	Parallel Bit 4, Chip Select	-0.5 to (V _{cc} + 0.5) V
9	A3	Parallel Bit 3	()
10	A2	Parallel Bit 2	
11	A1	Parallel Bit 1	
12	A0	Parallel Bit 0	
13	TUNE READY	Tune Ready Output	
14	SER/PAR	Serial/Parallel Mode Selection	
15	STB	Parallel/Serial Strobe	-0.5 to (V _{cc} + 0.5) V
16	TUNE MODE	Tune Mode Selection Pin	
18	V _{BB}	High Bias +100 V Supply Input	-0.5 to +125 V
22, 25	RF I/0	RF Input/Output	+32 dBm, +33 dBm ₂

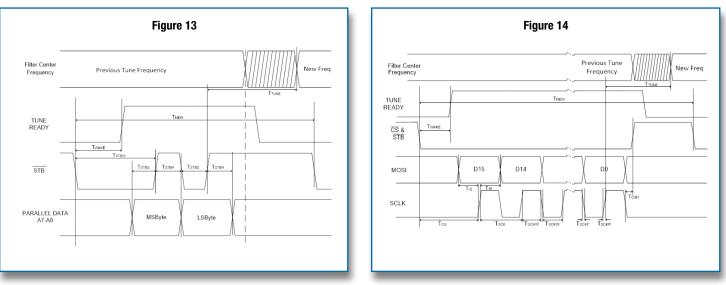
Note(s): 1 Leave floating for unit to function properly.

2 First number indicates maximum in-band power levels and second number indicates maximum out of band RF power levels either in CW or composite average for multi-tones.

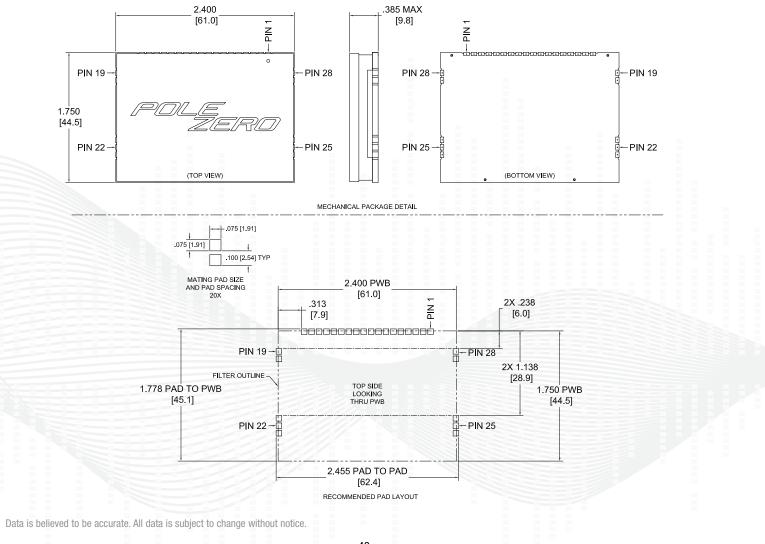
MINI EDE® (COA) Droduct Number Cuide

Digital Interface Information


The digital interface format can be either SPI serial or parallel depending on the state of the SER/PAR pin.


Parallel Timing Diagram:

MINI-ERF® (S04) SERIES (Continued)


Performance:

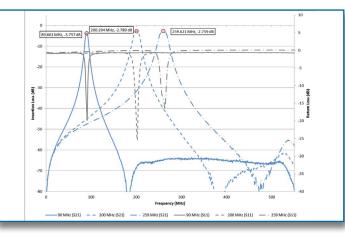
The following plots illustrate approximate performance:

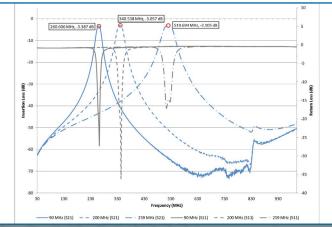
Mechanical Outline:

Extended Range Filters

Serial Timing Diagram:

The **MINI-ERF®** (S11) is an internally switched dual band, low-cost, miniature, high-performance tunable filter. The S11 filter was designed to have the best power handling and Q in the smallest package possible. The size is 2.0" x 2.0" x 0.293". All filters are fully tested and aligned by Pole/Zero for convenience and ease of use. SPI or Parallel control interfaces are available. Custom bandwidths are available upon request.


MINI-ERF[®] (S11) SERIES


Specifications:

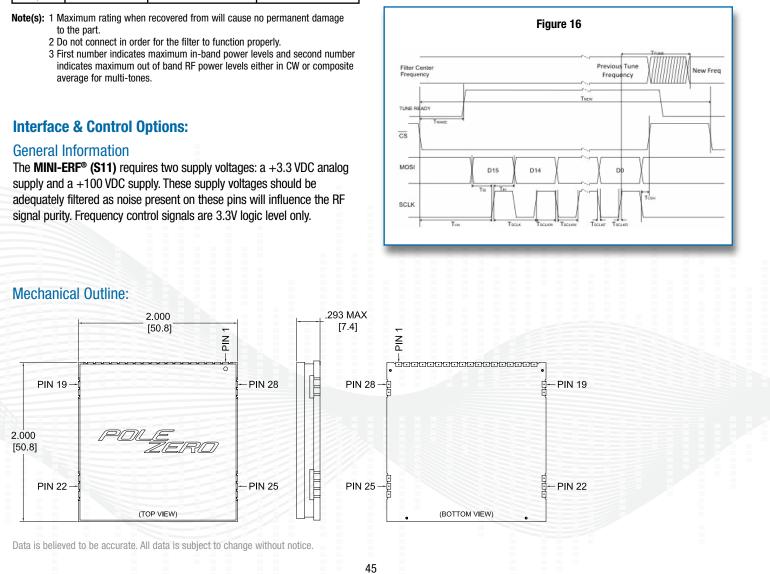
Frequency Coverage:	90 to 520 MHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.45:1 typical, 2:1 max.
In-band RF Power Handling:	2 Watts (7% BW Filters) 1 Watt (4% BW Filters)
Outband RF Power Handling:	Up to 5 Watts (input) 30 MHz to $f_0 - 10\%$ $f_0 + 10\%$ to 900 MHz
In-band Second Order Intercept Point	nt: +90 dBm
In-band Third Order Intercept Point:	+40 dBm typical (input)
Center Frequency Drift:	60 PPM/°C typical
Tuning Control:	Parallel or Serial
Tuning Speed:	12 µsec typical @ 0 dBm*
DC Power Consumption (Static):	+3.3 VDC @ 75 mA typical +100 VDC @ 1.2 mA typical
Shape Factor (30 dB / 3 dB):	6 ± 0.5 typical, 7.2 max.
Operating Temperature Range:	40°C to +85°C
Size: $2.0 \times 2.0 \times .293$ (in	n.) / 50.8 × 50.8 × 7.4 (mm.)
Weight:	1.05 oz. / 30 g. typical
RF Connection:	SMT castellation

Performance:

The following plots illustrate approximate performance:

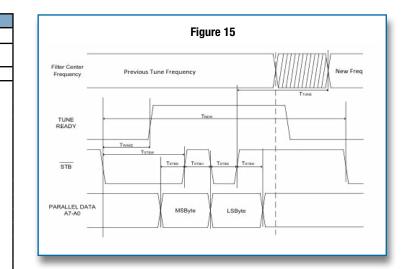
MINI-ERF® (G3) Product Number Guide:

Series	Frequency (MHz)	% Bandwidth (3 dB)	Package			
MN	90-520	7 4	S11			
Note(s):	Options may be limited to particular frequency bands and/or configurations. Consult factory for your application.					
Example:	Product # MN-90-520-4-S11					


MINI-ERF® (S11) Selection Guide:

Frequency Range	Suffix	% Bandwidth (3 dB)	Insertion Loss	Strobe Rate (max.)	Selectivity ± 10% (dB)	Selectivity ± 20% (dB)
90 to 520 MHz	-4	3.5/4.8	5.5/8.5	2 KHz	21 typical (18 min.)	32 typical (28 min.)
	-7	6.8/7.6	3.0/4.5		15 typical (13 min.)	26 typical (22 min.)

Pinout & Ratings:

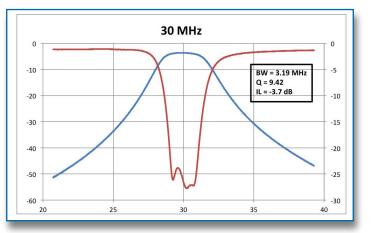

Pin #	Reference Designator	Description	Maximum Ratings
1	V _{cc}	3.3 V _{DC}	-0.3 V_{DC} to +3.6 V_{DC}
2, 17, 19-21, 23, 24, 26-28	GND	GND	N/A
3, 4, 16	N/C	No Connect ₁	N/A
5	A7 MOSI	Parallel Address 7 SPI Master Out Slave In	
6	A6	Parallel Address 6]
7	A5 SCLK	Parallel Address 5 SPI Clock	
8	$\frac{A4}{CS}$	Parallel Address 4 SPI Chip Select (Active Low)	
9	A3	Parallel Address 3	
10	A2	Parallel Address 2	-0.5 V_{DC} to V_{CC} + 0.5 V_{DC}
11	A1	Parallel Address 1]
12	A0	Parallel Address 0	
13	TUNE READY	Tune Ready Output]
14	SER/PAR	Serial/Parallel Selection Pin (High or open for serial)	
15	STB	Parallel Tune Strobe Serial Filter Wake	
18	V _{BB}	100 V _{DC}	-0.3 to +110 V
22, 25	RF	RF In/Out	Ì

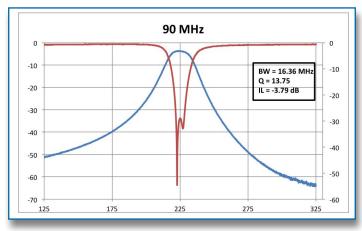
average for multi-tones.

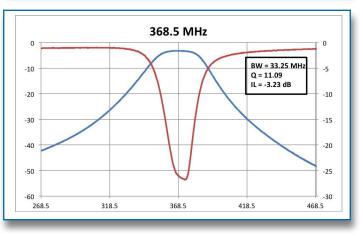
Extended Range Filters

Serial Timing Diagram:

The **MINI-POLE®** Extended Range Series of tunable filters was developed to address applications needing a small, surface mount package with wide tunability. Selectivity is enhanced in the MINI/3 version by use of 3 pole filter architecture. This tunability is accomplished by the use of multiple internal tunable filters along with high performance RF band select switches all contained in one housing. The tunable filters are designed to minimize size and power consumption while maintaining high RF power handling and linearity characteristics.


MINI/3-ERF SERIES


Specifications:


Frequency Coverage:	30 MHz to 520 MHz
Input/Output Impedance:	50Ω
In-band Input/Output VSWR:	1.5:1 typical, 2.2:1 max
In-band RF Power Handling:	1 Watt (input)
Outband RF Power Handling:	2 Watts (input)
In-band Second Order Intercept Poin	t: +90 dBm
In-band Third Order Intercept Point:	+40 dBm (input)
Center Frequency Drift:	-90 PPM/ºC
Tuning Control:	SPI or 8 bit with load
Tuning Speed:	35 µS max. at +25 dBm
DC Power Consumption (Static):	+5 VDC @ 200 mA, typical
Shape Factor (30 dB/ 3 dB):	4 typical
Operating Temperature Range:	-40°C to +85°C
Size: 2.00 × 2.520 × 0.39	3 (in.) / 51 × 64 × 10 (mm.)
Weight:	1.3 oz. / 38 g.
RF Connection:	SMT pin

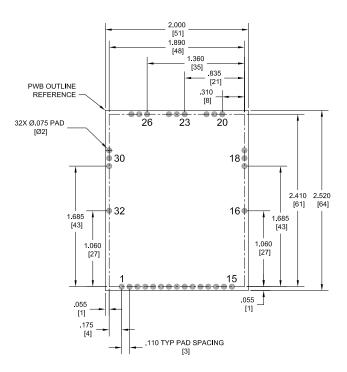
Performance:

The following plots illustrate approximate performance:

MINI/3-ERF® Filters Product Number Guide:

Series	Frequency (MHz)	% Bandwidth (3 dB)	Connector Type		
MN3	30-520	10	S05		
Example: Product # MN3-30-520-10-S05					

Interface & Control Notes:

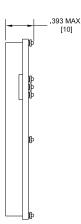

General Information

The MINI/3-ERF® requires two supply voltages. A +5 VDC analog supply and a +1.65 to 5.5 VDC digital supply. These supply voltages should be adequately filtered as noise present on these pins will influence the RF signal purity. A third, high voltage supply may be applied to the filter (user enabled feature) for ultra-low EMI/ sensitivity applications.

Digital Interface Information

The digital interface format is an 8 bit parallel, two byte write with load. The filter band is selected by the first byte and the tune frequency is selected by the second byte. All data input pins are universal data bus capable of 1.8 V, 2.5 V, 3.3 V and 5 VDC logic voltage nodes which is selected by the Vccd supply voltage used.

Mechanical Outline: (top view)

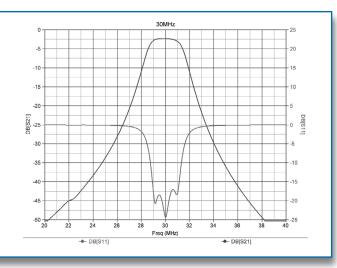

Pinout & Ratings:

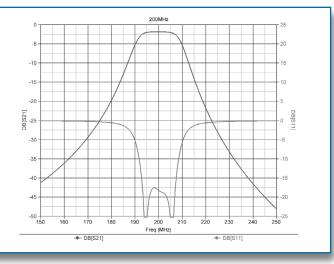
Pin #	Reference Designator	Description	Maximum Ratings
1	SER/PAR	Serial/Parallel Mode Selection	-0.5 to (V _{cc} + 0.5) V
2	TUNE READY	Tune Ready Output	—
3	V _{CCD}	Digital Interface Supply Input	-0.5 to +6.5V
4	A7/SCLK	Parallel Bit 7, Serial Clock	
5	A6	Parallel Bit 6	
6	A5/MOSI	Parallel Bit 5 Master Output, Slave Input	
7	A4/CS	Parallel Bit 4, SPI Chip Select	
8	A3	Parallel Bit 3	-0.5 to (V _{CCD} +0.5) V
9	A2	Parallel Bit 2	
10	A1	Parallel Bit 1	
11	A0	Parallel Bit 0	
12	STB	Parallel Strobe	
13	V _{CC}	+5 V Power Supply Input ±10%	-0.3 to +5.5 V
14, 16, 17, 19-29, 31, 32	GND	Digital/RF Ground	
15	V _{BB}	High Bias +100 V Supply Input	-0.5 to +110 V
18, 30	RF I/0	RF Input/Output	+32 dBm, +33 dBm ₁

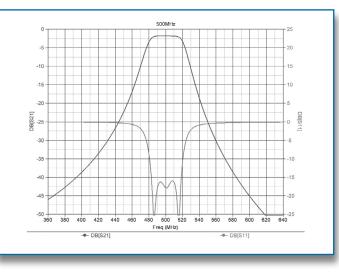
Note(s): 1 First number indicates maximum in-band power levels and second number indicates maximum out of band RF power levels either in CW or composite average for multi-tones.

MINI/3-ERF® SERIES Selection Guide:

Frequency	Suffix	% Bandwidth	Insertion	Strobe Rate	Selectivity	Selectivity
Range		(3 dB)	Loss	(max.)	± 10% (dB)	± 20% (dB)
30 to 520 MHz	-10	9.8/11	3.5/4.5	1.5 KHz	16 typical (14 min.)	34 typical (30 min.)


Information/Quote Requests: support@polezero.com

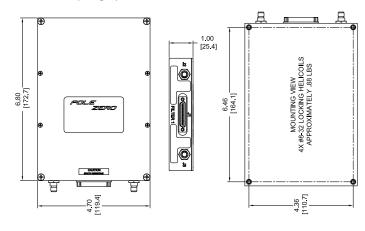



The new **ERF-5W[™]** filter takes Pole/Zero's[®] MINI-ERF technology to a higher level of RF power handling, with 5 W (average) in-band power handling, and covering the entire military tactical radio tuning range of 30 to 520 MHz in one integrated package. This tunability is accomplished by the use of three poles of selectivity, multiple internal tunable filters along with high performance RF band select switches. The tunable filters are designed to minimize size and power consumption, while maintaining high RF power handling and linearity characteristics. Serial control is accomplished via a standard Serial Peripheral Interface (SPI)-based bus. ERF-5W[™] filters are available in both single and dual-channel configurations.

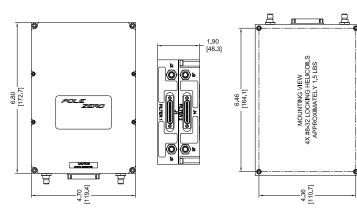
Performance:

The following plots illustrate approximate performance:

ERF-5W[™] SERIES Selection Guide:


Frequency Range	Suffix	% Bandwidth (3 dB)	Insertion Loss	Strobe Rate (max.)	Selectivity ± 10% (dB)	Selectivity ± 20% (dB)
30 to 520 MHz	-10	9.0/11	2.5/3.5	1 KHz	18 typical (14.5 min.)	34 typical (30 min.)
Dual 30 to 520 MHz	-10	9.0/11	2.5/3.5	1 KHz	18 typical (14.5 min.)	34 typical (30 min.)

ERF-5W[™] Filter Products Number Selection Guide:


Series	Frequency (MHz)	% Bandwidth (3 dB)	Package		
5W	30-520	10	M01		
D5W (Dual)	30-520	10	M02		
Note: Options may be limited to particular frequency bands and/or configurations. Consult factory for your applicat					
Example:	Product # 5W-30-520-10-M01				

Mechanical Outline:

ERF-5W[™] (Single) M01

ERF-5W[™] (Dual) M02

Data is believed to be accurate. All data is subject to change without notice.

ERF-5W[™] SERIES

Specifications:

Frequency Coverage:		30 to 520 MHz
Input/Output Impedance:		50Ω
In-band Input/Output VSWR:		1.65:1 max.
In-band RF Power Handling:	5 V	Vatts (input) average
Outband RF Power Handling:	(up to 1	0 Watts, see note 1)
In-band Second Order Intercept Pe	oint:	+100 dBm (input)
In-band Third Order Intercept Poin	t:	+47 dBm (input)
Center Frequency Drift:		-80 PPM/ºC
Tuning Control:		Parallel or Serial
Tuning Speed:	25 µsec ty	ypical, 50 µsec max.
DC Power Consumption (Static):	+	5 VDC @ 1.5 A max.
Shape Factor:		3.5 typical
Operating Temperature Range:		-40°C to +85°C
Size: Single: $4.70 \times 6.8 \times 1.0$ (in Dual: $4.70 \times 6.8 \times 1.90$ (in		
Weight:	-	4.08 oz. / 399.161 g.
	Dual:	24 oz. / 680.389 g.
RF Connection:		SMA jack

Note 1: Out of band RF power handling refers to signals that are at least 20% removed from the tuned center frequency and is frequency dependent: 5 W signals applied between 30 and 75 MHz, 8 W from 75 to 175 MHz, and 10 W from 175 to 520 MHz.

Pinout & Ratings:

Pin #	Reference Designator	Description	Maximum Ratings
1-6, 8, 11, 20-23, 26, 29	N/C	No Connect (1)	—
7, 9, 12, 24, 25, 27	GND	Digital/RF Ground	—
10	BAND 1	Band Select Bit 1	
13	A7/SCLK	Parallel Bit 7, Serial Clock	
14	A5/MOSI	Parallel Bit 5 Master Output, Slave Input	-0.5 to (V _{CCD} + 0.5) V
15	A3	Parallel Bit 3	
16	A1	Parallel Bit 1	
17	TUNE READY	Tune Ready Output	—
18, 36	V _{CCD}	Digital Interface Supply Input	-0.5 to +5.5 V
19, 37	Vcc	+5 V Power Supply Input ±10%	-0.3 to +5.5 V
28	BAND 0	Band Select Bit 0	
30	STB	Parallel Strobe	
31	A6	Parallel Bit 6	
32	A4/CS	Parallel Bit 4/SPI Chip Select	-0.5 to (V _{cc} + 0.5) V
33	A2	Parallel Bit 2	
34	AO	Parallel Bit 0	
35	PAR/SER	Parallel/Serial Mode Selection	

Note(s): 1 Leave pins disconnected for unit to function properly.

Interface & Control Notes:

General Information

The **ERF-5W[™]** requires a single +5 VDC analog supply and a +1.65 to +5.5 VDC digital supply. These supply voltages should be adequately filtered as noise present on these pins will influence the RF signal purity.

Digital Tune Interface

The **ERF-5W[™]** tune interface is capable of operating at a variable input logic level. In order to set the logic level, tie the "Digital Interface Supply", VCCD, pins to the voltage of the logic level that will interface with the **ERF-5W[™]**. For instance, if the tune interface should operate at +3.3 V CMOS, tie the "Digital Interface Supply" pins to +3.3 V. If the tune interface should operate at +5 V CMOS, tie the "Digital Interface Supply" pins to +5 V. The digital inputs can be driven with CMOS or TTL signals. All digital outputs are CMOS.

The **ERF-5W[™]** can operate in Serial Mode or Parallel mode. The tune mode is chosen at power-up by sampling the PAR/NSER input. To operate in serial mode either let the PAR/NSER pin float or tie it to ground. To operate in parallel mode, pull the PAR/NSER pin to +3.3 V or greater (this pin can be tied to VCCD if VCCD is >= +3.3 V).

DC Control Interface Characteristics:

Parameter	V _{CCD}	Minimum	Maximum	Units
High-level Input Voltage	1.65V to 1.95V	$V_{CCD} imes 0.65$		
	2.3V to 2.7V	1.7		V
	3V to 3.6V	2	VCCD	v
	4.5V to 5.5V	$V_{CCD} imes 0.7$		
Low-level Input Voltage	1.65V to 1.95V		$V_{\text{CCD}} \times 0.35$	
	2.3V to 2.7V		0.7	v
	3V to 3.6V		0.8	v
	4.5V to 5.5V		$V_{\text{CCI}} \times 0.3$	

MINI-POLE® NOTCH Filters are optimized for small physical size and low power consumption. Standard package is Thru-Hole Mount. For interface and mechanical outline, please refer to the bandpass MINI-POLE[®] section on pages 10-15.

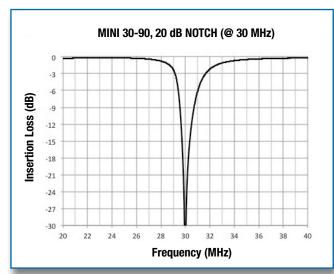
MINI-POLE® NOTCH SERIES

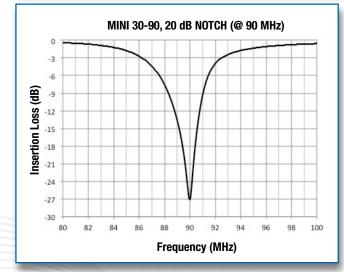
Specifications:

Frequency Coverage (7 Bands):	1.5 to 400 MHz
Input/Output Impedance:	50Ω
Passband Input/Output VSWR:	2:1 max.
Notch RF Power Handling:	+24 dBm
Passband RF Power Handling: >	(offset dependent) 5 Watts @ \pm 20% offset typical
Notch Depth:	20 dB
3 dB Bandwidth:	10% typical
Passband IL:	<1 dB
Passband IP3:	+50 dBm (input, f0 > 30 MHz)
Center Frequency Drift:	-80 PPM/°C
Tuning Control:	8 bit parallel
Tuning Speed: 10 µS (fo	> 30 MHz, +10 dBm reference)
DC Power Consumption (Static):	+5 VDC @ 10 to 250 mA +100 VDC @ 2 mA
Operating Temperature Range:	-40°C to +85°C
Size: $0.6 \times 1.4 \times 2.3$ (in.) / 15.2 × 35.6 × 58.4 (mm.)
Weight:	3.2 oz. / 90.7 g.
RF Connection:	Thru-hole pin

Pinout & Ratings:

PIN #	Reference Designator	Description	Maximum Ratings	
1, 21	RF I/0	RF Input/Output	+30 dBm	
2, 3, 5, 15, 16, 18-20, 22, 42	GND	Digital/RF Ground	_	
4	V _{cc}	+5 V Power Supply Input ±10%	-0.5 to +6 V	
6	A7	Parallel Bit 7		
7	A6	Parallel Bit 6		
8	A5	Parallel Bit 5		
9	A4	Parallel Bit 4	-0.6 to +6.25 V	
10	A3	-0.6 t Parallel Bit 3		
11	A2	Parallel Bit 2		
12	A1	Parallel Bit 1		
13	A0	Parallel Bit 0		
14	STB	Strobe	-0.5 to (V _{cc} + 0.5) V	
17	V _{BB}	High Bias +100 V Supply Input	-0.5 to +125 V	
23, 28-35	N/C	No Connect (1)	-	
24-27, 36-41	Filter Enable	Filter Enable Pins (2)		

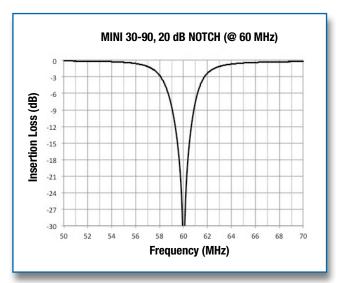

Note(s): 1 Leave pins disconnected for unit to function properly. 2 Pins must be connected as shown in package outline for filter to function properly.

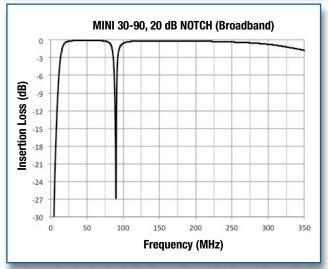

SERIAL INTERFACE				
PIN #	Reference Designator	Description	Maximum Ratings	
1, 21	RF I/0	RF Input/Output	+30 dBm	
2, 3, 5, 15, 16, 18-20, 22, 42	GND	Digital/RF Ground	_	
4	V _{cc}	+5 V Power Supply Input ±10%	-0.5 to +6 V	
6-10, 23, 28-35	N/C	No Connect (1)	-	
11	SD0	Serial Data Out		
12	SDI	Serial Data In	-0.5 to (V _{cc} + 0.5) V	
13	SCLK	-0.5 to (V _{cc}		
14	STB	Serial Strobe		
17	V _{BB}	High Bias +100 V Supply Input	0 to +125 V	

Note(s): 1 Leave pins disconnected for unit to function properly.

Performance:

The following plots illustrate approximate performance (not representative of all frequency ranges)


MINI-POLE® NOTCH Filters Product Number Guide:


Series		Frequency (MHz)	Notch Depth (dB)	Options	
MINI-NOTCH		4-10			
		10-30	00	В	
		30-90	20	С	
		90-200			
Available Opti	C. Custo	ns: B. Serial Interface C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)			
Note(s):	1. Options may be limited to particular frequency bands				

and/or configurations. Consult factory for your application. 2. Filters are aligned and tested using a High Bias of +100 VDC unless otherwise specified by the customer. Product # MINI-NOTCH-10-30-20 Example:

Data is believed to be accurate. All data is subject to change without notice.

Tunable Notch Filters

MINI-POLE® NOTCH SERIES Selection Guide:

Frequency	Suffix	Notch Depth	Strobe Rate	% Ba	ndwidth (3 dB) Ty	pical
Range	Sullix	(dB)	(max.)	Low	Mid.	High
30 to 90 MHz	-20	20 min.	1.5 KHz	8.0%	6.0%	8.0%
225 to 400 MHz	-20	20 min.	2 KHz	9.5%	6.0%	6.5%

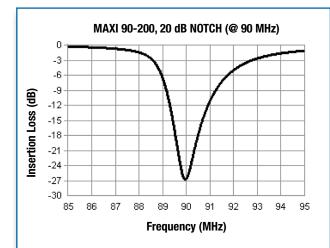
MAXI-POLE® NOTCH Filters offer all of the same performance features as the Mini-Notch filters, with the advantage of an improved notch shape factor. For interface and mechanical outline, please refer to the bandpass the MAXI-POLE® **NOTCH** section.

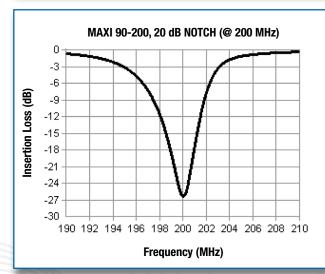
MAXI-POLE® NOTCH SERIES

Specifications:

Frequency Coverage (7 Bands):	1.5 to 400 MHz
Input/Output Impedance:	50Ω
Passband Input/Output VSWR:	2:1 max.
Notch RF Power Handling:	+24 dBm typical
Passband RF Power Handling: > 1	(offset dependent) 0 Watts @ \pm 10% offset typical
Notch Depth:	20 dB
3 dB Bandwidth:	5% typical
Passband IL:	< 1 dB
Passband IP3:	+50 dBm (input, $f_0 > 30$ MHz)
Center Frequency Drift:	-80 PPM/°C
Tuning Control:	8 bit parallel
Tuning Speed: 10 µS (fo	> 30 MHz, +10 dBm reference)
DC Power Consumption (Static):	+5 VDC @ 10 to 500 mA +100 VDC @ 2 mA
Operating Temperature Range:	-40°C to +85°C
Size: 1.5 × 2.5 × 3.3 (in.) / 38.1 × 63.5 × 83.8 (mm.)
Weight:	9.2 oz. / 260.8 g.
RF Connection:	SMA jack

Pinout & Ratings:


PARALLEL INTERFACE				
PIN #	Reference Designator	Description	Maximum Ratings	
1	A2	Parallel Bit 2		
2	A3	Parallel Bit 3		
3	A4	Parallel Bit 4	-0.5 to (V _{CC} + 0.5) V	
4	A5	Parallel Bit 5	-0.5 to (VCC + 0.5) V	
5	A6	Parallel Bit 6		
6	A7	Parallel Bit 7		
7, 9, 11, 12	GND	Digital/RF Ground	-	
8	V _{CC}	+5V Power Supply Input ±10%	-0.5 to +6 V	
10	V _{BB}	High Bias +100V Supply Input	0 to +125 V	
13	STB	Strobe		
14	AO	Parallel Bit 0	-0.5 to (V _{CC} + 0.5) V	
15	A1	Parallel Bit 1		


SERIAL INTERFACE					
PIN #	Reference Designator	Description	Maximum Ratings		
1	SD0	Serial Data Out	-0.5 to (V _{CC} + 0.5) V		
2-6	N/C	No Connect (1)	-		
7, 9, 11, 12	GND	Digital/RF Ground	-		
8	V _{CC}	+5V Power Supply Input $\pm 10\%$	-0.5 to +6 V		
10	V _{BB}	High Bias +100V Supply Input	0 to +125 V		
13	STB	Strobe			
14	SCLK	Serial Clock	-0.5 to (V _{CC} + 0.5) V		
15	SDI	Serial Data In			

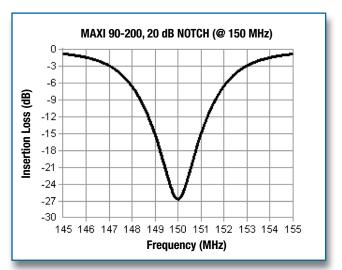
Note(s): 1 Leave pins disconnected for unit to function properly.

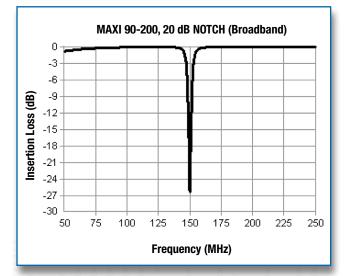
The following plots illustrate approximate performance (not representative of all frequency ranges)

MAXI-POLE® NOTCH Filters Product Number Guide:

	Series	Frequency (MHz)	Notch Depth (dB)	Options
		1.5-4		
		4-10		
-		10-30	20	A
	MAXI-NOTCH	30-90		B C
		90-200		F
1		200-400		
		225-400		

Available Options: A. Internal DC-DC converter (eliminates need for high voltage supply. Requires additional 250 mA of 5 VDC current.)


- **B. Serial Interface**
 - C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)
- F. Filtered D-connector
- 1. Options may be limited to particular frequency bands
 - and/or configurations. Consult factory for your application.
 - 2. Filters are aligned and tested using a High Bias of +100 VDC
 - unless otherwise specified by the customer.


Product # MAXI-NOTCH-10-30-20 Example:

Note(s):

Data is believed to be accurate. All data is subject to change without notice.

Tunable Notch Filters

MAXI-POLE® NOTCH SERIES Selection Guide:

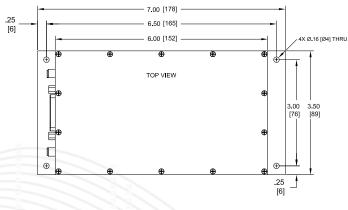
Frequency	Suffix	Notch Depth	Strobe Rate	% Ba	ndwidth (3 dB) Ty	pical
Range	Sullix	(dB)	(max.)	Low	Mid.	High
4 to 10 MHz	-20	20 min.	170 Hz	8.0%	5.5%	6.0%
10 to 30 MHz	-20	20 min.	840 Hz	6.5%	6.0%	7.5%
200 to 400 MHz	-20	20 min.	2 KHz	5.0%	3.0%	3.0%
225 to 400 MHz	-20	20 min.	2 KHz	5.0%	3.0%	3.0%

The MAXI/4R NOTCH contains 4 "poles" of filtering to provide additional rejection at the tuned frequency of the notch when compared to our standard MAXI-POLE® Notches. The unit has been designed for applications in UHF receiver front ends (nearby transmitter carrier rejection) and/or transmitter back ends (broadband noise rejection at the frequency of a nearby receiver). For interface and mechanical outline, please refer to the bandpass MAXI/4R.

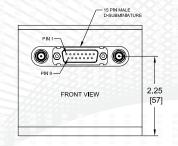
MAXI/4R NOTCH SERIES

Specifications:

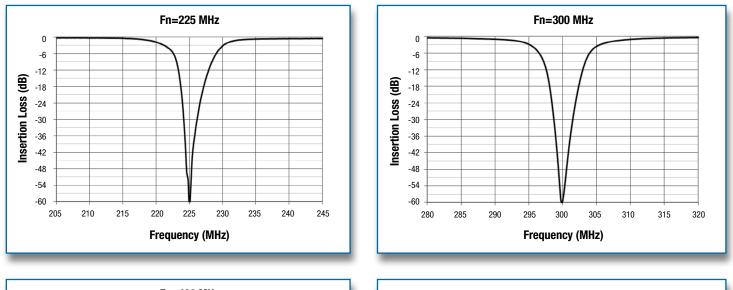
Frequency Coverage:	225 to 400 MHz*
Input/Output Impedance:	50Ω
Passband Input/Output VSWR:	2:1 max.
Notch RF Power Handling:	1 Watt
Passband RF Power Handling:	50 Watt @ FN \pm 20 MHz typical
Notch Depth:	35 dB min.
Notch Width:	FN ± 300 KHz min.
3 dB Bandwidth:	10 MHz typical
Passband IL:	< 1 dB
Passband IP3:	+50 dBm (10/20 MHz)
Center Frequency Drift:	(internal temp. comp.)
Tuning Control:	9 bit serial
Tuning Speed:	40 µS (1 MHz clock)
DC Power Consumption (Static):	+5 VDC @ 1.5 A max. +100 VDC @ 2 mA
Operating Temperature Range:	-40°C to +70°C
Size: 3.1 × 3.5 × 7.0 (in.) / 79.4 × 88.9 × 177.8 (mm.)
Weight:	56 oz. / 1588 g. / 1.6 kg.
RF Connection:	SMA jack

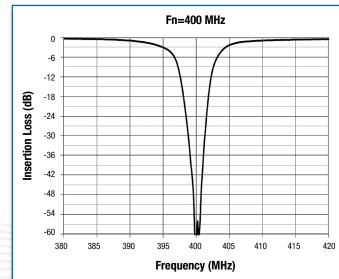

* Consult factory for additional ranges.

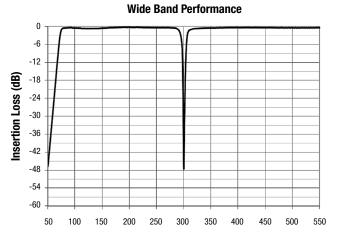
Pinout & Ratings:


PIN #	Reference Designator	Description	Maximum Ratings
1	SDO	Serial Data Out	-0.5 to (V _{CC} + 0.5) V
2-6	N/C	No Connect (1)	—
7, 9, 11, 12	GND	Digital/RF Ground	
8	V _{cc}	+5 V Power Supply Input ±10%	-0.5 to +6 V
10	V _{BB}	High Bias +100 V Supply Input	0 to +125 V
13	STB	Strobe	
14	SCLK	Serial Clock	-0.5 to (V _{CC} + 0.5) V
15	SDI	Serial Data In	

Note(s): 1 Leave pins disconnected for unit to function properly.


Mechanical Outline:





Performance:

Tunable Notch Filters

Frequency (MHz)

POWER-POLE® NOTCH Filters offer improved performance and power handling over our MINI and MAXI-NOTCH Filters.

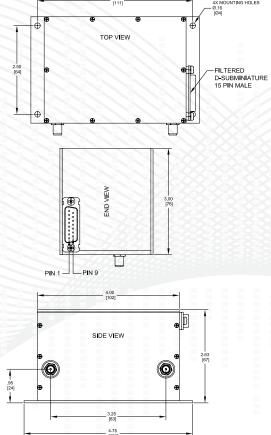
For interface and mechanical outline, please refer to the bandpass POWER-POLE® section.

POWER-POLE® NOTCH SERIES

Specifications:

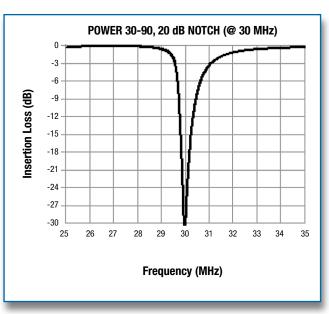
Frequency Coverage (3 bands):	30 to 90 MHz
Input/Output Impedance:	50Ω
Passband Input/Output VSWR:	2:1 max.
Notch RF Power Handling:	2 Watt
Passband RF Power Handling: > 50	(offset dependent) O Watts @ \pm 20% offset typical)
Notch Depth:	20 dBm
3 dB Bandwidth:	4% typical
Passband IL:	< 1 dB
Passband IP3:	+50 dBm (input, $f_0 > 30$ MHz)
Center Frequency Drift:	-80 PPM/°C
Tuning Control:	8 bit parallel
Tuning Speed:	20 µS
DC Power Consumption (Static):	+5 VDC @ 400 mA to 1.5 A
Operating Temperature Range:	-40°C to +65°C
Size: $2.6 \times 3.0 \times 4.0$ (in	n.) / 66.7 × 76.2 × 101.6 (mm.)
Weight:	18.7 oz. / 530.1 g. / .5 kg.
RF Connection:	SMA jack

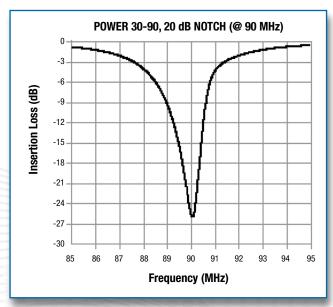
Pinout & Ratings:

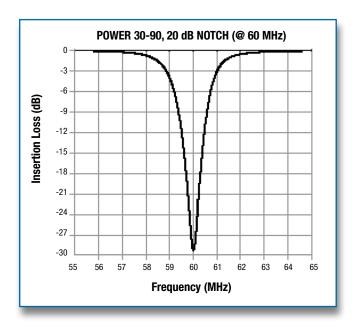

PARALLEL INTERFACE				
PIN #	Reference Designator	Description	Maximum Ratings	
1	A2	Parallel Bit 2		
2	A3	Parallel Bit 3		
3	A4	Parallel Bit 4	0.5 to (/ 0.5) //	
4	A5	Parallel Bit 5	-0.5 to (V _{cc} + 0.5) V	
5	A6	Parallel Bit 6		
6	A7	Parallel Bit 7		
7, 9, 11, 12	GND	Digital/RF Ground	—	
8	V _{cc}	+5 V Power Supply Input ±10%	-0.5 to +6 V	
10	N/C	No Connect (1)		
13	STB	Strobe		
14	A0	Parallel Bit 0	-0.5 to (V _{cc} + 0.5) V	
15	A1	Parallel Bit 1		

Note(s): 1 Leave pins disconnected for unit to function properly.

SERIAL INTERFACE				
PIN #	Reference Designator	Description	Maximum Ratings	
1	SDO	Serial Data Out	0 to +6 VDC	
2-6, 10	N/C	No Connect (1)	_	
7, 9, 11, 12	GND	Digital/RF Ground	—	
8	Vcc	+5 V Power Supply Input ±10%	-0.5 to +6 V	
13	STB	Strobe		
14	SCLK	Serial Clock	-0.5 to (V _{cc} + 0.5) V	
15	SDI	Serial Data In		


Note(s): 1 Leave pins disconnected for unit to function properly.


Mechanical Outline:

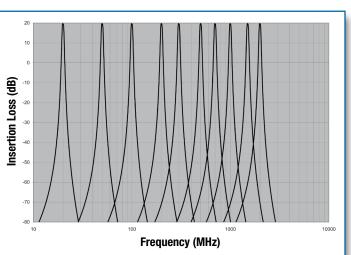

Performance:

The following plots illustrate approximate performance (not representative of all frequency ranges)

Tunable Notch Filters

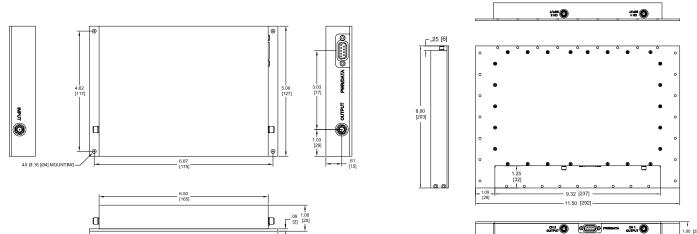
POWER-POLE® NOTCH Filters Product Number Guide:

Series		Frequency (MHz)	Notch Depth (dB)	Options
POWER-NOTCH		30-90	00	В
FUWER-	NUTCH	30-90	20	С
Available Optic	C. Custor	Interface m Frequency Bands (Sj TOP frequencies in MH		
Note(s):		Options may be limited to particular frequency bands and/or configurations. Consult factory for your application.		
Example:	Droduct	Product # POWER-NOTCH-30-90-20		


The **PSEL1003** is a broadband preselector designed for applications, such as JTRS, requiring light weight, small size and low power consumption. It provides digitally tunable bandpass filtering from 20 MHz to 2 GHz and high pass filtering from 2 to 3 GHz. The **PSEL1003** provides 20 dB of gain for your receiver application and includes an RS-485 interface for easy integration. It can be ordered to provide filtering for one or two receive paths.

PSEL1003

Specifications:


20 to 3000 MHz
Broadband Preselector
$20 \text{ dB} \pm 3 \text{ dB}$
8 dB avg.
+3 dBm avg.
100 mW max.
-35 dB @ ± 10% avg. -58 dB @ ± 20% avg. -65 dB @ ± 30% avg.
< 1 mS
+24V ± 5% or +12V ± 5% 2 Watts/path
-40°C to +50°C
) / 25.4 × 165.1 × 127 (mm.) ' 25.4 × 203.2 × 241.3 (mm.)
Single:1.4 lbs. / .64 kg.Dual:2.8 lbs. / 1.27 kg.
SMA jack


Performance:

Chassis Outline:

Single Channel

PSEL1003 Product Number Guide:

[Series	Frequency (MHz)
[PSEL1003	R-20-3000

Pre/Post-Selector Series

Dual Channel

The Cosite Communications Interference Challenge

Today's military communications transceivers operate over many frequency bands with features such as embedded cryptography, frequency hopping, networking and waveform upgradeability via field software change-all contained in the small package that modern electronics packaging allows.

When these transceivers are operated in close proximity to other RF emitters, these "other" RF emissions constitute interference to the transceiver when receiving. While the interference can be created either intentionally (i.e. jamming) or not, the transceiver's receive performance degrades rapidly due to a phenomenon termed "cosite communications interference."

Receivers differ in their vulnerability to cosite interference. While most communications receivers use superheterodyne architectures with very selective Intermediate Frequency (IF) circuitry, the level of RF selectivity prior to the IF circuitry, termed "preselection," may be minimal or even non-existent - especially in modern multiband, software defined radios. In cosite operation, the lack of preselection renders the RF and frequency conversion circuitry vulnerable to nonlinear effects created by the high level interference. These nonlinear effects allow translation of unwanted frequency components into the receiver's IF circuitry and demodulator, which both work to degrade the cosite receiver's sensitivity to weak, desired signals.

Additionally, the cosite RF emitter, although commonly operating at a frequency offset from the local receiver, may create spurious emissions (harmonics, intermodulation products, noise, etc.) that fall directly on the cosite receiver's operating frequency. These spurious emissions create an effective "noise floor" in the cosite receiver that can be 10's of decibels higher than the receiver's inherent noise floor yielding severe degradation of the receiver's sensitivity and commensurate degradation in the communication link's range.

Potential Interference Mitigation Strategies

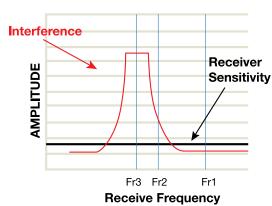
To consider interference mitigation strategies for these cosite interference effects, the following three generalized interference scenarios viewed from the perspective of the sensitive cosite receiver will be illustrative.

Figure 1 is a spectral plot at the cosite receiver's antenna port, showing a generalized interference spectrum, shown in red, in relation to three potential reception frequencies. This interference spectrum can be either narrowband or wideband, intentionally generated (jamming) or unintentionally generated merely through the act of "friendly" cosite communications. While the figure shows the interference spectrum generally lower in frequency than the desired reception frequencies, the pertinent issue is really the level of frequency offset, if any, between the interference and desired reception.

If appreciable frequency offset exists between the interference spectrum and the desired receive frequency, frequency selective filtering in the form of bandpass, low pass, high pass or band reject (notch) filtering can be employed to reject the interference spectrum. In the event that F_{r1} is offset in another operational band, fixed tuned, "cross band" selective filtering can be employed. As the offset between F_{r1} and the interference spectrum diminishes, greater selectivity must be employed. Further, in the event that either the interference or the desired reception frequency is changing rapidly with time ("hopping"), tunable selective filtering approaches must be utilized.

In the event that very limited or no frequency offset is available between the interfering waveform and the desired receive frequency, frequency selective filtering may render insufficient rejection. In these situations, cancellation or "outphasing" techniques can be employed where a replica of the interfering spectrum is either directly coupled from the local, cosite interferer (termed a "reference") or synthesized at the receive site ("referenceless") with appropriate level and phase adjustment such that destructive interference between the interference replica and the actual interference occurs in the receive signal path. Figure 2 illustrates the cancellation technique using a directly coupled interference replica approach. This technique can result in interference rejection of >40 dB at the receiver.

Cosite Communications Interference Scenarios and Appropriate Mitigation Approaches


We will now consider general interference mitigation strategies for the three reception scenarios identified in figure 1.

Reception at Fr1

In this scenario, there is significant frequency offset between the This scenario is similar to the above scenario in that high level interference and receive signal frequency. Additionally, the spurious interference exists with an unspecified offset from the desired receive (noise) from the interferer at the receive location is well below the frequency, but differs in that the interference's spurious (noise) energy receive sensitivity and, therefore, not likely to result in degradation of at the receive location is sufficient to degrade the receiver's sensitivity. the receiver's sensitivity. Under the assumption that the interference Interference mitigation for this scenario can utilize frequency selective level at the receiver exceeds the linear dynamic range of the receiver, filtering described above to reject the interferer's signal energy although the nonlinear effects described above will degrade receive sensitivity. with less frequency offset, the level of selectivity must increase. If the receive frequency to interference offset will remain large and Further, since interference spurious exists at the receive frequency, generally constant, fixed tuned selective filtering (LPF, BPF, HP, Notch) selective filtering at the receiver will not remove this energy, but must in the receive signal path can be used to further isolate these signals. be employed in the cosite emitter's (i.e. transmitter's) signal path. Note that in the event notch filtering is employed, the notch frequency Interference rejection using cancellation approaches can be utilized. must be tuned to the interferer's frequency of operation and not the but must be limited to approaches using interference references receiver frequency which involves careful coordination between radio with sufficient rejection bandwidths to simultaneously reject both the frequency systems which may be difficult to obtain. In the event of high level interference and spurious to appropriate levels. Since the multiple interferers, multiple notch filters must be employed – all bandwidth of a referenced cancellation approach is a function of the tuned to the frequency of the various interferences.

If the interference and receive signal offset is changing with time due to frequency hopping of either signal, the selective filtering employed must also adapt or "tune" to maintain the appropriate level of isolation.

Cancellation can also be employed to reject the interferer's amplitude at the receive location. If the interference is narrowband (<100 KHz), a Reception at Fr3 where desired reception is within the bandwidth "referenceless" canceller can be employed to reject the interference at the of the interference can be reflective of both jamming and wideband receive site. This approach finds greatest application for Signal communications applications (MUOS, SRW, WNW, ANW2), Selective Intelligence (SIGINT) applications where wide receive bandwidths filtering is not useful in this scenario unless the interference waveform contribute to greater vulnerability to high level, narrowband interference. can be slightly modified by placing a spectral notch in the interference bandwidth at the emitter to assist reception at F_{r3} . The spectral notch can be achieved by using classical selective notch filtering at the emitter's output or via Pole/Zero's Cosite Notch Filter (CNF). The CNF is a novel approach to create a very low loss, frequency hopping capable, spectral notch.

× -Ø RX

Cancellation or "outphasing"

Figure 2

60

Reception at Fr2

interfering antenna to receiving antenna's amplitude and delay characteristics, which may be changing with time, the fielded cancellation approach must be adaptive.

Reception at Fr3

Cancellation incorporating a reference also offers the potential to cancel the interference at the receive location if sufficient cancellation depth is achievable.

JS

Integrated Cosite Equipment (ICE)

Cosite Communications Interference Mitigation Specifics

The mitigation strategies presented above for each scenario are summarized in the following table. To capture the level of selectivity required in each scenario, a benchmark must be used. The benchmark used in this catalog incorporates the 50 dB selectivity point's frequency offset of the filter as a percentage of tune frequency.

Mitigation Strategy	Interference Scenario			
Miliyalion Sualegy	Reception at F _{r1}	Reception at F _{r2}	Reception at F_{r3}	
	Selective Filtering			
Fixed or Cross Band				
Modest Performance				
High Performance				
Ultra High Performance				
	Cancellation			
Referenced				
Referenceless				
CNF				

Table 1

For example, a bandpass filter tuned at 100 MHz that achieves 50 dB selectivity at 110 MHz, is a modest performance filter (10% offset, 50 dB point).

How To Use This Catalog

Pole/Zero suggests the following methodology to develop an optimal interference mitigation strategy for your application:

- 1. Determine the interference scenario that meets your application
- 2. Use table 1 to consider general mitigation strategies
- 3. Use table 2 to consider specific Integrated Cosite Equipment for your application
- 4. Call Pole/Zero Business Development Engineers for additional assistance

Equipment	Catalog Page	VHF-L	VHF-H	UHF	SATCOM
ICE1006	60				
ICE2002	62				
ICE3009	64				
ICE3001	66				
ICE3002	67				
ICE3003	68				
ICE3005	69				
ICE3006	70				
ICE3007	71				
ICE3008	72				
ICE4003	73				
ICE4004	74				
ICE4005	75				
ICE5001	76				
ICE5002	77				
Referenced	80				
Referenceless	81				
CNF	78				

Table 2

62

Command & Control (C2) platforms require multiple RF communications channels to ensure force coordination over long distances. Unbeknownst to the warfighter, quite often these critical communication requirements are not met due to self-generated or cosite interference that severely degrades communication range. To ensure this does not happen to your platform. Pole/Zero[®] can provide a comprehensive evaluation of your platform's communication performance level, enabling peak operation even in the most dense electromagnetic environments. Pole/Zero[®]'s Cosite Interference Analysis takes into account the adversaries to your communications link including:

- · Radio spurious signals output
- Broadband noise
- Simultaneous co-channel operation
- Limited antenna isolation

The dynamic interaction of these phenomenons in your Command & Control (C2) communication architecture can severely hinder the warfighter's ability to communicate if not properly addressed. Whether during the development phase, a communication upgrade or on an existing deployed system, Pole/Zero® will assist your team to ensure optimum performance without the risk of either inadequate interference mitigation or costly overdesign. The end result is a cost-effective solution with maximum communication range!

Cosite Analysis & Support Capability:

Analysis support for system integration

- Derive platform configuration
- Interpret performance requirements
- Derive comm scenarios
- Determine and resolve cosite effects on system performance

Cosite Analysis Overview

Example Receiver Performance Improvement

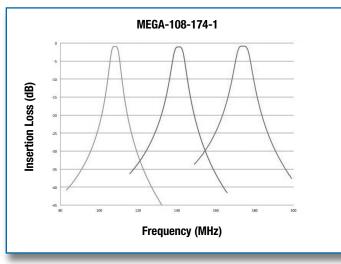
		Receiver	Performance	Improvement	Cosite Enhanced	l Performance
			Noise figure = 12 dB	8 dB	Noise figure = 4 dB	
Receiver		IF BW = 38 kHz		IF BW = 38 kHz		
		Sensitivity = -106 dBm	8 dB	Sensitivity = -114 dBm	Cosite	
		Receiver	Max Interferer Level		Max Interferer Level	Mitigation Receiver
			• (5% removed) = -23 dBm	32 dB	• (5% removed) = 9 dBm	Unit
		• (10% removed) = -23 dBm	56 dB	• (10% removed) = 33 dBm		

- Receiver desensitization
- Reciprocal mixing
- · Cross modulation

Process Analysis Components:

- Leverages equipment performance database
- Utilizes proprietary routines for predictions of interference effects

The **MEGA-POLE**[®] filter series covers the standard frequency bands within the 30 to 450 MHz range with VHF-L, VHF-H or UHF versions. This new filter series provides excellent selectivity while maintaining very low insertion loss. The product line also has exceptional RF power handling capability with a high third order intercept point. The MEGA-POLE® filter series can be used for transmitter applications to reduce power amplifier noise, harmonics and intermodulation products, to provide bi-directional filtering directly at a transceiver's antenna port, or other applications requiring extremely linear, high power RF bandpass filtering. It has been designed for rugged environments per MIL-STD-810.

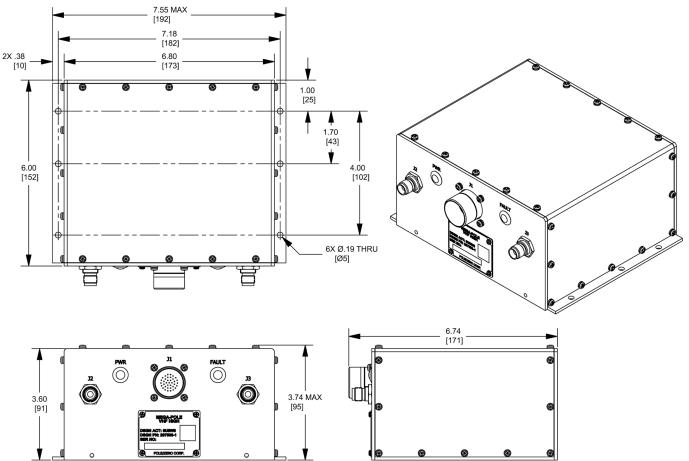

MEGA-POLE® SERIES

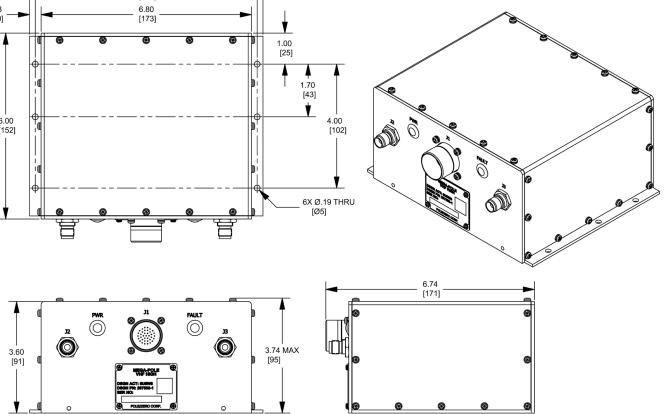
Specifications:

Frequency Covera	ge (VHF-L, V	HF-H or UHF):	30 to 450 MHz
Input/Output Imped	ance:		50Ω
In-band RF Power H	landling:		50 W average
			100 W peak
In-band Third Order	Intercept:		> +60 dBm
Tuning Control:	Fle	xible control de	sign for ARC-210
	and VHF-4	1000. Standard o	options available.
Tuning Speed:			< 25 µs typical
	Suppor	ts frequency hop	oping waveforms
DC Power:		+28 VDC, < 1	IA, MIL-STD-704
Center Frequency S	tability:	Interna	ally compensated
Shape Factor (30 d	B / 3 dB):	3	.3 to 3.75 typical
Operating Temperat	ture Range:		-40°C to +55°C
Size:	$6 \times 7.55 \times$	3.6 (in.) / 152 ×	190 × 91 (mm.)
Available Finishes:		Chem-Film	per MIL-C-5541
		CA	ARC Tan or Green
			ess Grey or Black
		avai	lable on request.
RF Connection:			TNC jack

Performance:

The following plots illustrate approximate performance (not representative of all frequency ranges):


MEGA-POLE® Filters Product Number Guide:


Series	Frequency (MHz)	Insertion Loss	Connector Type	Options
	30-88*			
MEGA	108-174	1-1.5 dB	TNC (Female)	С
	225-400			

Available Options: C. Custom Frequency Bands (Specify START and STOP frequencies in MHz.)

Options may be limited to particular frequency bands and/or Note(s): performance levels. Consult factory for your application. * Preliminarv

Mechanical Outline:

Integrated Cosite Equipment (ICE)

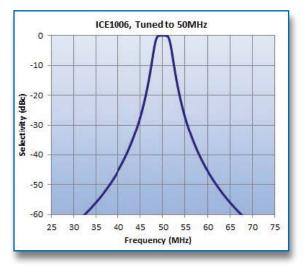
ıs

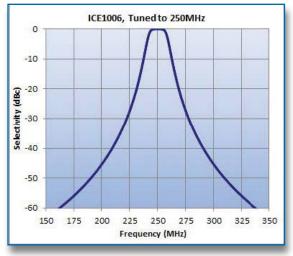
Enhance the performance of your transceiver in frequency hopping cosite applications through use of the direct radio interface connection to the MEGA-POLE®.

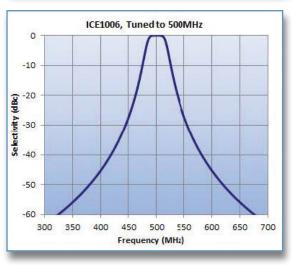
MEGA-POLE® is available in multiple frequency bands with potential customizations:

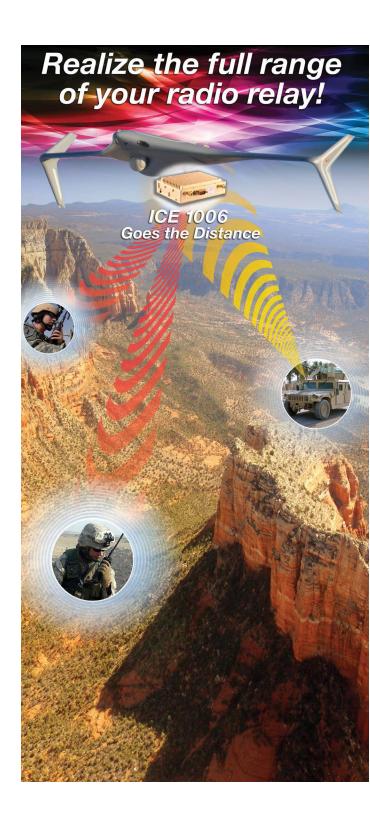
- additional poles for sharper selectivity
- expanded frequency range or multi-band solutions
- size/selectivity trade-offs for small form factors

Intended for operation with modern handheld transceivers, the **ICE1006** will enhance performance in retransmission (radio relay), frequency hopping (SINCGARS/HQ) and single channel tactical communications applications where cosite interference limits communications range. Potential applications include UAVs and tactical ground and vehicular systems. Please contact your sales representative at 513-870-9060 for further details.

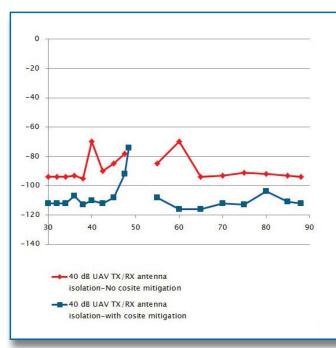

ICE1006

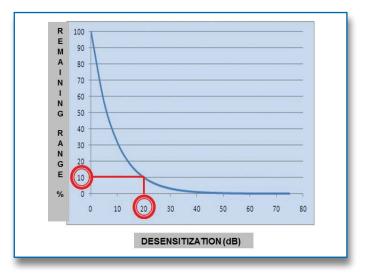

Specifications:


Part Number:	ICE1006-TR-30-512
Frequency Coverage:	30 to 512 MHz
Input/Output Impedance:	50Ω , 1.5:1 typical
Receive Gain (Typical):	3 dB min.
Receive Noise Figure:	7 dB max.
Receive Input P1 dB	+8 dBm typical
Tx/Rx Minimum Selectivity	-23 dB @ ± 10% -40 dB @ ± 20%
Ultimate Attenuation	-60 dB typical
Transmit RF Output Power:	5-10 W
Tuning Control	Standard SPI or PRC-148
Tuning Speed:	25 µs typical
Power:	+12 to +32 VDC <40 W typical
Operating Temperature Range:	-40°C to +55°C
Size: 1 × 3.75 × 2.75 (in.) / 2	25.4 × 95.25 × 69.85 (mm.)
Weight:	<8 oz. / <.23 kg.


Performance:

The following plots illustrate approximate performance:





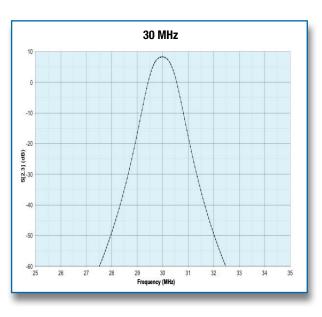
Integrated Cosite Equipment (ICE)

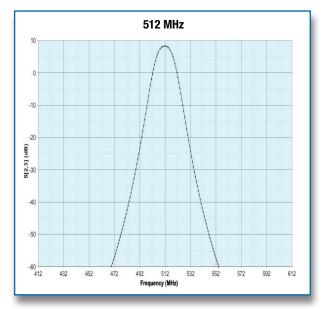
Performance:

The experimental data above was collected from a laboratory set-up depicted in the UAV operational scenario pictured here. This experiment utilized a 50 MHz downlink, assumed 40 dB of isolation between antennas on the UAV, and illustrated that a 20 dB improvement is achievable by incorporating ICE1006 in your system. A video of the laboratory set-up that describes the full experiment is available on our website.

Note that a 20 dB desensitization of your receiver results in the loss of 90% of your range! Regain the operating range of your system by incorporating ICE1006 in your retransmission system today!

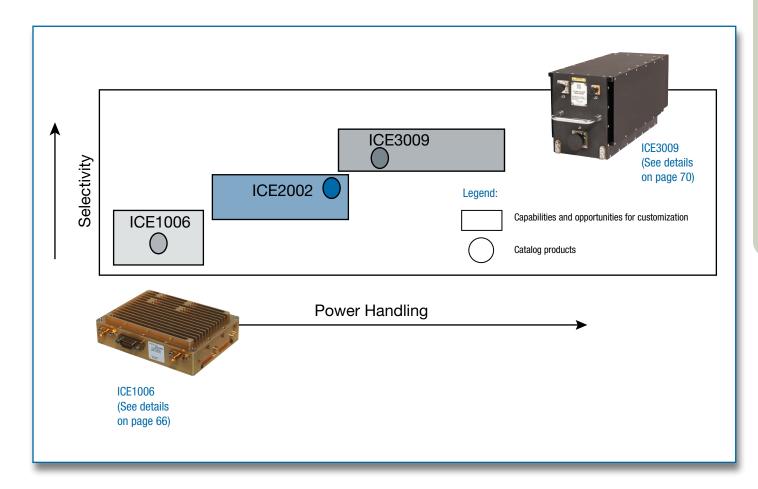
The **ICE2002** is a dual channel, half duplex transmit and receive filter/amplifier designed for UAV applications. When used with modern, lightweight transceivers, interference free, full range, communications are realized for communications relay and vehicle control applications. The transceiver interface supports modern frequency hopping algorithms with Guard channel monitoring and protection via internal filtering. The unit is cooled by an internal fan that draws ambient air.


ICE2002


Specifications:

1	
Part Number:	ICE2002-2TR-30-512
Frequency Coverage:	30 to 88 MHz (VHFL)
	108 to 174 MHz (VHFH)
	225 to 512 MHz (UHF)
	One Guard Channel
	-121.5 MHz (VHF Guard)
	-243 MHz (UHF Guard)
Receive Gain (Typical):	10 dB (Main Channel)
Receive Noise Figure (Typical):	5.0 dB nominal (Main Channel)
Transmit Noise Floor:	30 to 88 MHz
	-132 dBm/Hz @ 10% removed
	108 to 174, 225-512 MHz
	-132 dBM/Hz @ 10% removed
Transmit RF Output Power:	50 W FM, 15 W AM (carrier)
Selectivity:	30 to 88 MHz
	27 dB @ ±5%
	55 dB @ ±10%
	108 to 174, 225-512 MHz
	35 dB @ ±5%
	55 dB @ ±10%
Harmonics:	Transmit:
	Per MIL-STD-461E
Tuning Speed:	200 µs max.
Power:	1 Channel RX +28V @ 2.2A
	1 Channel Tx +28V @ 12.8 A
	2 Channel Tx +28V @25.6A
Operating Temperature Range:	-40°C to +55°C
Size: 4.25 x 9.0 x 22	2 (in.) / 108 x 228.6 x 559 (mm.)
Weight:	23 lbs. / 10 kg.

Performance:


The following plots illustrate approximate performance:

Pole/Zero's multi-band units have the right selectivity/size combination for your application.

Please contact us to discuss your specific needs. With our broad range of products, we have the optimal solution for your program.

The ICE2002 offers multi-band, high selectivity in a 12 lb. per channel form factor!

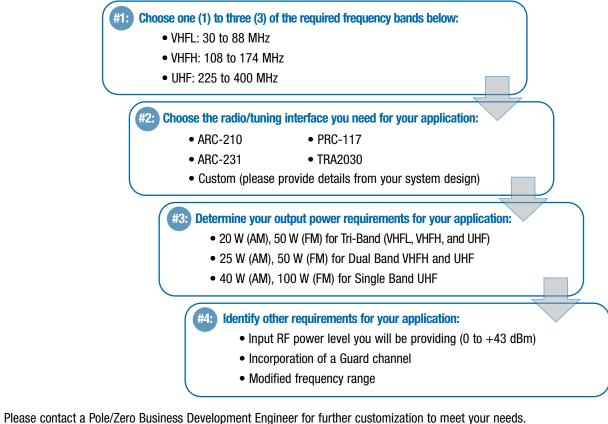
Customizations can involve:

- A single channel version with similar performance
- A lightweight model with selectivity trade-offs

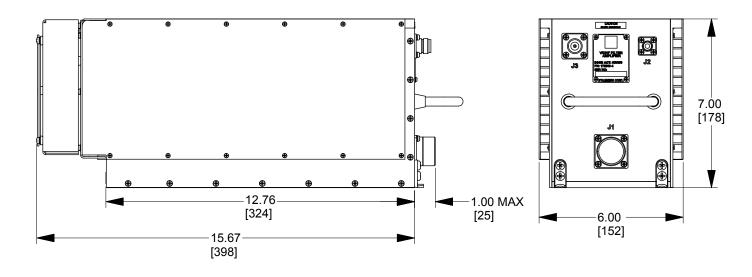
This subsystem is an agile filter for the VHF-L, VHF-H and UHF frequency bands. It allows operation of a number of transceivers in a cosite environment. The VHF/UHF filter provides multiple poles of RF selectivity to reduce broadband noise in transmit mode of operation and to reduce interfering signals at the transceiver's RF input in receive mode at Have Quick II/IIa and SATURN tuning speeds. This design incorporates a flexible control scheme that can be configured at the factory for various radio interfaces (ARC-210, ARC-231, ARINC 429, etc.). The design is highly integrated and includes all filters, amplifiers, power supply, transmit and receive switching (including a bypass mode) and Built-in-Test (BIT). A mounting tray is available as an option for easy incorporation on your platform. This system is qualified for military applications.

Cost-effective modifications are available on the ICE3009. Please contact your sales representative at 513-870-9060 for further details.

ICE3009


70

Specifications:


Part Number:	ICE3009-TR-30-400
Operation:	Half duplex transmit and receive
Frequency Coverage:	VHFL: 30 to 88 MHz VHFH: 108 to 174 MHz UHF: 225 to 400 MHz
Receive Gain (Typical):	5.0 to 10.0 dB
Receive Noise Figure (Typica	al): 9.0 dB
Receive Input IP3:	+52 dBm @ 5 & 10% offset
Transmit RF Output Power: de	20 W (AM) to 100 W (FM) epending on frequency band configuration
Selectivity (Typical):	-35 dB @ > ± 3.0% -55 dB @ > ± 5.0%
Broadband Noise:	-140 dBm/Hz @ > 5%
Harmonics (Typical):	-70 dBc (2 nd , 3 rd harmonic) -80 dBc (others)
- I J	Receive: < -90 dBm (> 3%) Transmit: -80 dBc min. per MIL-STD 461E
Tuning Speed:	UHF: < 50 μs VHF: < 100 μs
Power:	+28 VDC Tx: 386 W Rx: 125 W Bypass: 80 W
Operating Temperature Rang	ge: -20°C to +55°C
Size: 6	× 7 × 15.7 (in.) / 152 × 178 × 398 (mm.)
Weight:	20 lbs. / 9.07 kg.

Configuration Selection Guide:

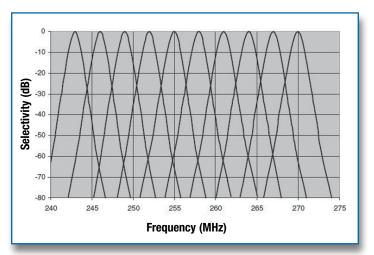
The ICE3009 design provides a flexible ICE platform that can be configured for your specific application. Your requirements can be achieved by tailoring the design through choices such as multiple frequency bands, multiple interface options, output power levels and various additional features such as Guard band options. Please review the guide below to tailor your ICE3009 to meet your needs:

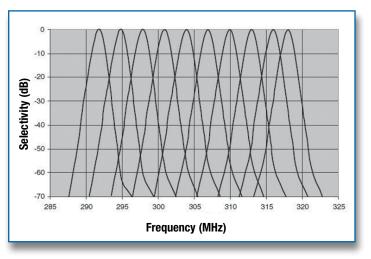
Chassis Outline:

Data is believed to be accurate. All data is subject to change without notice.

Integrated Cosite Equipment (ICE)

This subsystem is an agile filter for the SATCOM frequency band, capable of acting as either a receive or a transmit filter. It enables simultaneous operation of multiple transceivers in extreme cosite environments. The **ICE3001** provides multiple poles of RF selectivity to reduce broadband noise, harmonics, and spurious signals for either receive or transmit applications. This filter is a highly integrated design incorporating complete Built-in-Test (BIT) capability. The design has been qualified for military applications. A dual-mount tray is also available as an option for easy incorporation on your platform.

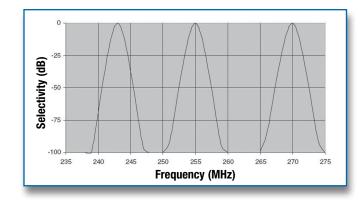

Cost-effective modifications are available on the **ICE3001**. Please contact your sales representative at 513-870-9060 for further details.

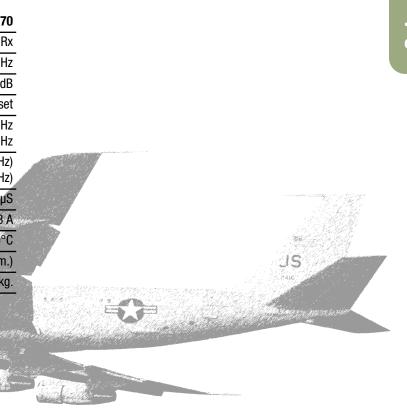

ICE3001

Specifications:

Part Number:		ICE3001-TR-243-318
Operation:		Tx or Rx
Frequency Coverage	: Receive: Transmit:	243 to 270 MHz 292 to 318 MHz
Receive Gain (Typica		5.0 dB 11.0 dB
Receive Noise Figure	e (Typical):	10.5 dB
Receive Input IP3:	65 dBm	n @ 12 & 24 MHz offset
Transmit RF Output	Power:	+18 dBm
Selectivity (Typical):	Receive Band: -30 dB @ ± 0.75% -45 dB @ ± 1.0% -65 dB @ ± 1.5% -80 dB @ > 6.0 MHz	-42 dB @ ± 1.0% -65 dB @ ± 1.5%
Spurious Signals:		-126 dBm (< 300 kHz) -70 dB (> 300 kHz)
Tuning Speed:		100 µS
Power:		+28 VDC @ 2.2 A
Operating Temperate	ure Range:	-20°C to +55°C
Size:	$3\times5.5\times13$ (in.) /	$75\times139\times337$ (mm.)
Weight:		9 lbs. / 4.08 kg.

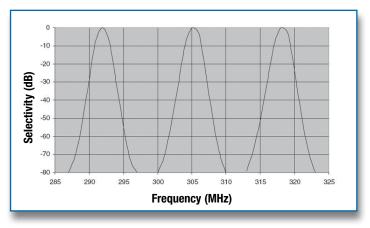
Performance:


The **ICE3002** is an agile filter for the SATCOM receive frequency band and is factory configured for an ARC-231 interface. It enables simultaneous operation of multiple transceivers in extreme cosite environments. The **ICE3002** provides multiple poles of selectivity to mitigate interference from collocated transmitters and other spurious signals present at the receive antenna. This SATCOM receive filter is a highly integrated design incorporating complete Built-in-Test (BIT) capability and is qualified for use in military applications.


Cost-effective modifications are available on the **ICE3002**. Please contact your sales representative at 513-870-9060 for further details.

ICE3002

Part Number:		ICE3002-R-243-27
Operation:		R
Frequency Coverage:		243 to 270 MH
Receive Gain (Typical	l):	11.0 to 14.0 dl
Receive Input IP3:	+55	dBm @ 4 & 8 MHz offse
Selectivity (Typical):		-65 dB @ ± 4.0 MH -80 dB @ > 5.0 MH
Spurious Signals:		-110 dBm (< 300 kHz -70 dB (> 300 kHz
Tuning Speed:		100 µ\$
DC Power:		+28 VDC @ 2.3/
Operating Temperatu	re Range:	0°C to +40°0
Size:	5 × 6.1 × 14.3 (in.)	/ 128 × 155 × 364 (mm.
Weight:	and a start of the second s Second second	16 lbs. / 7.26 kg
	U S AIR	



The ICE3003 is an agile filter for the SATCOM transmit frequency band and is factory configured for an ARC-231 interface. It enables simultaneous operation of multiple transmitters and receivers in extreme cosite environments. The ICE3003 provides multiple poles of selectivity to reduce broadband noise, harmonics, and spurious signals from propagating to the antenna. This SATCOM transmit filter is a highly integrated design incorporating complete Built-in-Test (BIT) capability and is qualified for use in military applications.

Cost-effective modifications are available on the ICE3003. Please contact your sales representative at 513-870-9060 for further details.

Performance:

ICE3003

Specifications:

Tx 292-318 MHz 200 W in 2 dB steps (FM) -65 dB @ ± 4.0 MHz -75 dB @ > ± 5.0 MHz
200 W in 2 dB steps (FM) -65 dB @ ± 4.0 MHz
-65 dB @ ± 4.0 MHz
-70 dBc (2 nd harmonic) -80 dBc (all others)
🕖 🗇 100-μS
+28 VDC @ 22 A
0°C to +40°C
//140 × 180 × 508 (mm.)
26 lbs. / 11.79 kg.


JS

The ICE3005 is an agile filter/amplifier cascade for the UHF frequency band with a VHF bypass. It enables simultaneous operation of multiple transceivers in a cosite environment and is factory configured for an ARC-210 interface. This filter/amplifier provides multiple poles of RF selectivity to reduce broadband noise, harmonics, and spurious signals while still providing full output power in transmit mode and excellent selectivity to interfering signals at the transceiver's RF input in receive mode. All transmit, receive, and bypass switching is incorporated into the two-port design. The ICE3005 also includes a separate audio processor circuit that mitigates popping and drop-outs in the R/T audio that are common in hopping or blanked waveforms. The **ICE3005** incorporates extensive Built-in-Test (BIT) capability and is qualified for military applications. A mounting tray is also available as an option for easy incorporation on your platform.

Cost-effective modifications are available on the ICE3005. Please contact your sales representative at 513-870-9060 for further details.

Performance:

Data is believed to be accurate. All data is subject to change without notice.

ICE3005

Part Number:	IC	E3005-TR-225-400
Operation:	Tx & Rx filter/a	amplifier with bypass
Frequency Coverage:	30 to 174 MHz filtered bypass	
	225 to 40	0 MHz AM/FM Rx/Tx
		lave Quick (HQ)/HQ I
	30) to 512 MHz bypass
Receive Gain (Typical):		7.0 to 11.0 dE
Receive Noise Figure (Typical):	9.5 dE
Receive Input IP3:	+60 dB	m @ 5 & 10% offse
Transmit RF Output Po	wer:	30 W AM/FN
Selectivity (Typical):	UHF Transmit:	UHF Receive:
	-10 dB @ ± 1.0%	-10 dB @ ± 1.0%
	-30 dB @ ± 2.0%	-35 dB @ ± 2.0%
	-40 dB @ ± 3.0%	-50 dB @ ± 3.0%
	-47 dB @ ± 4.0%	-57 dB @ ± 4.0%
	-55 dB @ ± 5.0%	-65 dB @ ± 5.0%
Broadband Noise:	-142 c	IBm/Hz @ ± 10 MH
	-14	5 dBm/Hz @ ± 5.0%
Harmonics (Typical):		< -80 dBo
Spurious Signals:		-135 dBc @ > 3%
Tuning Speed:		200 µS
Power:		+28 VDC @ 13 A
Operating Temperature	Range:	-20°C to +55°C
Size: 7.8	× 6 × 19.4 (in.) / 198	$8 \times 152 \times 493$ (mm.
Weight:		24.5 lbs. / 11.1 kg

ICE3006-TR-225-400

30 to 174 MHz bypass 225 to 400 MHz AM/FM Rx/Tx Have Quick (HQ)/HQ II, SATCOM 400 to 406.025 MHz AM/FM Receive

only and automatic bypass

9.5 dB max. @ 225 to 395 MHz

+60 dBm @ 5 & 10% offset

10.0 dB max. @ 395 to 397.5 MHz 10.5 dB max. @ 397.5 to 400 MHz

110 W (FM/FSK 225 to 400 MHz)

125 W (FM/PSK 292 to 318 MHz)

UHF Transmit:

-10 dB @ ± 1.0%

-30 dB @ ± 2.0%

-40 dB @ ± 3.0%

-47 dB @ ± 4.0%

-55 dB @ ± 5.0%

7.0 to 11.0 dB

30 W (AM)

UHF Receive:

-10 dB @ ± 1.0%

-35 dB @ ± 2.0%

-50 dB @ ± 3.0%

-57 dB @ ± 4.0%

-65 dB @ ± 5.0%

-150 dBc @ > 4%

-20°C to +55°C

26.2 lbs. / 11.88 kg.

< -90 dBc

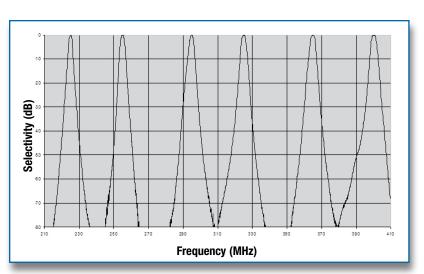
200 µS

-142 dBm/Hz @ ± 10 MHz

115 VAC, 400 Hz @ 861 VA

 $9 \times 6 \times 19.3$ (in.) / 228 $\times 152 \times 491$ (mm.)

-145 dBm/Hz @ ± 5.0%


Tx & Rx filter/amplifier with bypass

Integrated Cosite Equipment (ICE)

The ICE3006 is an agile filter/amplifier cascade for the UHF frequency band with a VHF bypass. It enables simultaneous operation of multiple transceivers in the cosite environment. This filter/amplifier provides multiple poles of RF selectivity to reduce broadband noise, harmonics and spurious signals while still providing full output power in transmit mode and excellent selectivity to interfering signals at the transceiver's RF input in receive mode. All transmit, receive and bypass switching is incorporated into the three-port design (LOS and SATCOM). The ICE3006 also includes a separate audio processor circuit that mitigates popping and dropouts in the R/T audio that are common in hopping or blanked waveforms. The **ICE3006** incorporates extensive Built-in-Test (BIT) capability and is qualified for airborne applications. A mounting tray is also available as an option for easy incorporation on your platform. Cost-effective modifications are available on the ICE3006. Please contact your sales representative at 513-870-9060 for further details.

Performance:

ICE3006

Operation:

Specifications: Part Number:

Frequency Coverage:

Receive Gain (Typical):

Receive Input IP3:

Selectivity (Typical):

Broadband Noise:

Harmonics (Typical):

Operating Temperature Range:

Spurious Signals:

Tuning Speed:

Power:

Size:

Weight:

Receive Noise Figure (Typical):

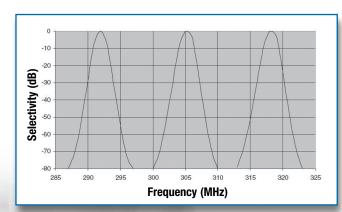
Transmit RF Output Power:

The **ICE3007** is an agile filter for the SATCOM frequency band and is factory configured for an ARC-210 interface. The **ICE3007** provides multiple poles of selectivity to reduce broadband noise and spurious signals from propagating to the antenna. The **ICE3007** is cooled by an internal fan that draws ambient air.

Cost-effective modifications are available on the ICE3007. Please contact your sales representative at 513-870-9060 for further details.

ICE3007

Specifications:


Part Number:		ICE3007-T-292-318
Operation:		Tx filter/amplifier
Frequency Covera	ge:	292 to 318 MHz
Transmit Noise Flo	oor:	-140 dBm/Hz @ ± 4 MHz
Transmit RF Outpo	ut Power:	30 to 42 dBm in 2 dB steps, 43.6 dBm max.
Selectivity (Typica	l):	-65 dB @ ± 4.0 MHz -75 dB @ > ± 5.0 MHz
Harmonics (Typica	al):	-60 dBc (2 nd , 3 rd harmonic)
Tuning speed:		100 µs
Power:		+28 VDC Input, 8 A max.
Operating Temper	ature Range:	-20°C to +55°C
Size:	5.5 × 5.5 ×	: 20 (in.) / 140 × 140 × 508 (mm.)
Weight:		18.5 lbs. / 8.3 kg.

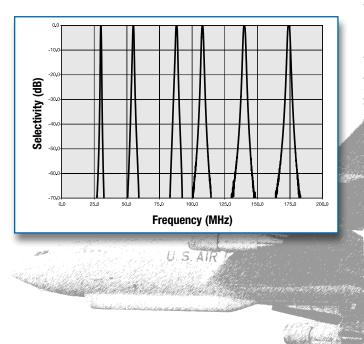
Selective Filtering - High Performance

Data is believed to be accurate. All data is subject to change without notice.

Data is believed to be accurate. All data is subject to change without notice

Performance:

Selective Filtering - High Performance


Integrated Cosite Equipment (ICE)

The ICE3008 is a half duplex transmit and receive filter amplifier that provides cosite mitigation throughout the VHF band. The design incorporates a flexible control interface that can be configured at the factory for various radios (ARC-201D, ARC-210, ARC-231, etc.) and supports operation in fast hopping modes, such as SINCGARS. In addition, our MEGA-POLE® technology is utilized as an output stage to further enhance the performance of the filter amplifier. An optional mounting tray is available for easy integration onto your platform.

Cost-effective modifications are available on the ICE3008. Please contact your sales representative at 513-870-9060 for further details.

Performance:

ICE3008

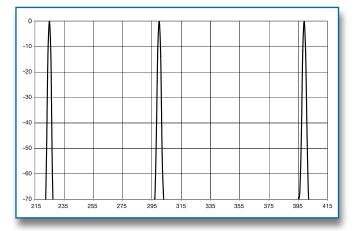
Specifications:

Part Number:		ICE3008-T	R-30-174
Operation:	Half dupl	lex Tx & Rx filter	/amplifier
Frequency coverage:	VHFL: VHFH: Bypass:	108 to	o 88 MHz 174 MHz 512 MHz
Receive Gain (Typical):		7.0 t	o 11.0 dB
Receive Noise Figure (Typical):			10.0 dB
Transmit Noise Floor:		-135 dBm/Hz @ -140 dBm/Hz @	
Receive Input IP3:	+54	dBm @ 4 & 8 N	/Hz offset
Transmit Output Power:		25, 50 W FM (s 3 W FM, 12 W AM	
Selectivity (Typical): VHFL RX/		-25 dB @ ± -52 dB @ ± ± 2.0 MHz (-1 -36 dBc @ ± -50 dBc @ ±	= 4.0 MHz 7 dB typ.) = 4.0 MHz
Harmonics (Typical):	-	70 dBc (2 nd , 3 rd -80 dB	harmonic) Sc (others)
Spurious Signals: Rece Trans	mit: -110	-112 dBm (< -80 dBm (e -80 dBm (2 -100 dBm (4 to dBm (elsewhere n (elsewhere out	Isewhere) to 4 MHz) o 10 MHz) e in-band)
Tuning Speed:		(200 µs
Power:		+28 VHFL: VHFH:	VDC Input 350 W 250 W
Operating Temperature Range:		0°C	to +50°C
Size: 8.4 × 10	× 22.76 (in.) /	/ 213 × 253 × 5	578 (mm.)
Weight:		43 lbs.	/ 19.5 kg.

The ICE4003 is a Dual Channel Filter that provides two independent UHF TX/RX channels in a single package. Each channel can operate autonomously into a dedicated antenna or both channels can be combined into a single antenna. Furthermore, the combiner used in the **ICE4003** is capable of combining any combination of TX/RX signals while minimizing path loss. Currently, supported radios include the ARC-225 and ARC-210. The ICE4003 is also designed with a flexible interface to support future radio requirements, such as JTRS. A mounting tray is also available as an option for easy incorporation on your platform.

Cost-effective modifications are available on the ICE4003. Please contact your sales representative at 513-870-9060 for further details.

ICE4003


Specifications:

ICE4003-2TR-225-400
Dual channel Tx & Rx filter/amplifier
225 to 400 MHz (2 channels)
1.0 to 5.0 dB
10 dB*
+55 dBm @ 4 & 8 MHz offset
25 W per channel
Transmit or Receive: -8 dBc @ ± 1.0 MHz -40 dBc @ ± 2.0 MHz -60 dBc @ ± 3.0 MHz
-70 dBc (2 nd harmonic) -105 dBc (3 rd harmonic) -90 dBc (others)
-85 dBm/Hz @ ± 4 MHz -75 dBm/Hz @ ± 25 MHz
200 µS
115 VAC, 400 Hz @ 6.3 A
0°C to +40°C
3 × 20 (in.) / 211 × 287 × 505 (mm.)
71 lbs. / 32.2 kg.

* Performance varies around guard band (243 MHz).

he files

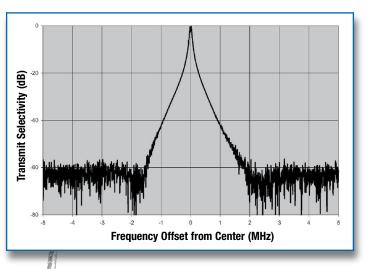
Performance:

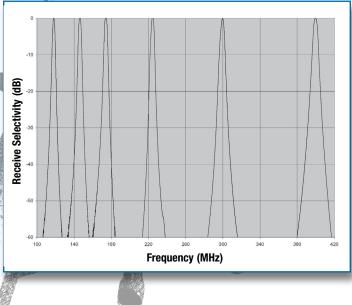
nn

79

Selective Filtering - Ultra High Performance

The ICE4004 is an agile filter for both the VHF and UHF frequency bands. It allows simultaneous operation of a number of transceivers in the cosite environment. The VHF/UHF Filter provides significant RF selectivity to reduce broadband noise in transmit mode of operation and to reduce interfering signals at the transceiver's RF input in receive mode. The design is highly integrated, including Built-in-Test (BIT), a fail-safe bypass mode and an ARC-210 interface. The ICE4004 fits the standard ATR-1 Long mounting tray.

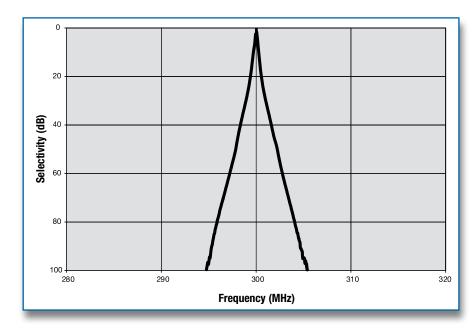

Cost-effective modifications are available on the ICE4004. Please contact your sales representative at 513-870-9060 for further details.


ICE4004


Specifications:

Part Number:	ICE4004-TR-118-400
Operation:	VHF/UHF frequency agile filter/amplifier
Frequency Coverage:	118 to 174 MHz
	225 to 400 MHz
	30 to 512 MHz Automatic bypass
Receive Gain (Typical):	4.0 to 15.0 dB
Receive Noise Figure (Ty	ypical): 9.0 dB
Receive Input IP3:	+40 dBm
Transmit RF Output Pow	rer: 10 W, 15 W, 20 W (selectable)
Selectivity (Typical):	Receive: Transmit:
	$@ \pm 4.0 \text{ MHz} (\text{VHF}) -60 \text{ dBc} @ (> 4 \text{ MHz})$
	2 ± 8.0 MHz (VHF)
100 million (1997)	2 ± 4.0 MHz (UHF)
-36 dBc @	⊉ ± 8.0 MHz (UHF)
Broadband Noise:	-140 dBm/Hz @ 10 MHz
Harmonics (Typical):	-60 dBc
0 ; 0; 1	
Spurious Signals:	-80 dBc
	-80 dBc 300 µS
Spurious Signals: Tuning Speed: Power:	
Tuning Speed:	300 µS +28 VDC @ 23 A
Tuning Speed: Power: Operating Temperature	300 µS +28 VDC @ 23 A

Performance:



The ICE4005 is a UHF SATCOM High Power Transmit Filter/Amplifier (HPTF/A) designed to provide 125 Watts minimum RF output power in the 290 to 320 MHz frequency range. This system provides excellent selectivity and broadband noise performance. It enables simultaneous operation of multiple transceivers in a cosite environment. This filter incorporates extensive Built-In-Test (BIT) capability, has been qualified for airborne platforms and has applications on groundmobile and shipboard communication systems. This unit is qualified for use in military applications. A mounting tray is also available for easy incorporation on your platform.

Cost-effective modifications are available on the ICE4005. Please contact your sales representative at 513-870-9060 for further details.

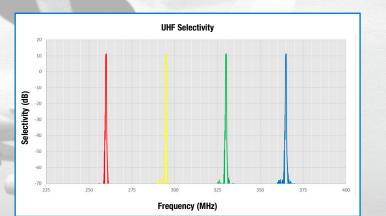
Performance:

Data is believed to be accurate. All data is subject to change without notice.

ICE4005

Part Number:	ICE4005-T-290-320
Operation:	Selectable dual-radio Tx filter amplifier
Frequency coverage:	UHF SATCOM Transmit 290 to 320 MHz
Transmit Noise Floor:	\leq -139 dBm/Hz @ \geq ± 10 MHz removed
Transmit RF Output Powe	er: 51.0 to 37.0 dBm (adjustable with 1 dB steps)
Selectivity (Typical):	-45 dBc min. @ \pm 2.5 MHz -50 dBc typical @ \pm 2.5 MHz
Harmonics (Typical):	-80 dBc max. (2 nd harmonic) -90 dBc typical (2 nd harmonic) -90 dBc max. (3 rd harmonic) -100 dBc typical (3 rd harmonic)
Tuning Speed:	750 µs max.
Power:	18 to 32V $@ \le 22.5 \text{ A}$ MIL-STD-704F compliant
DC Output:	+28V @ 100 mA for external LNA
Operating Temperature Ra	nge: -40°C to +45°C @ 100% duty cycle -45°C to +70°C @ 20% duty cycle
Size: 4.9 × 7	Modified ½ ATR Short .7 × 12.5 (in.) / 124 × 195 × 318 (mm.)
Weight:	16 lbs. / 7 kg.
Software:	D0-178B Level D compliant

Information/Quote Requests: support@polezero.com


The **ICE5200[™]** is a highly integrated, high-performance, fasttuning Cosite Filter/Amplifier system for mitigating severe cosite interference caused by collocated RF systems on airborne, sea, and ground mobile platforms. ICE5200 is a radio ancillary device that is installed in between the radio and the antenna to help prevent receiver desensitization and to purify the transmit spectrum to protect other RF equipment on board.

As the flagship model of the Integrated Cosite Equipment (ICE[™]) product line, ICE5200 replaces first-generation ICE5001 and **ICE5002** models with improved RF performance, modern waveform support, and a lower size, weight, and power (SWaP) profile.


- Qualified to MIL-STD-810 and MIL-STD-461
- Direct radio tuning interface (AN/ARC-210)
- · Reduced size, weight, and power (SWaP) from first-generation **ICE5000** series
- Line of Sight (LOS) and Satellite Communication (SATCOM) waveform support
- Available MUOS SATCOM configuration
- · Customizations available upon request

Specifications:	
Part Number:	ICE5200-TR-30-406
Operation:	Full duplex (SATCOM)
	Half duplex (LOS)
	Tx & Rx filter/amplifier
Frequency Coverage:	30 to 88 MHz (VHF Low)
	118 to 174 MHz (VHF High)
	225 to 406 MHz (UHF)
Receive Gain (Min.):	10 dB
Receive Noise Figure (Max.):	11 dB
Receive Spurious Level (Receive):	-112 dBm (<300 kHz)
Output Third Order Intermodulation D	istortion (Max.):
	-60 dBm (4 MHz offsets)
Transmit RF Output Power:	95 W (FM)
·	30 W (AM)
Selectivity (Max.) (VHF Low):	-10 dBc @ ± 2.0 MHz
	-30 dBc @ ± 3.0 MHz
	-48 dBc @ ± 4.0 MHz
	-60 dBc @ ± 6.0 MHz
Selectivity (Max.) (VHF High):	-13 dBc @ ± 2.0 MHz
	-38 dBc @ ± 3.0 MHz
	-62 dBc @ ± 4.0 MHz
	-65 dBc @ ± 6.0 MHz
Selectivity (Max.) (UHF):	-60 dBc @ ± 2.0 MHz
	-75 dBc @ ± 4.0 MHz
	-80 dBc @ ± 6.0 MHz
Tune Time:	50 µS (UHF)
Supply Voltage:	115 VAC (Three phase, 400 Hz)
Power Consumption (Max.):	970 VA
Operating Temperature Range:	-20°C to +55°C
Size: 7.0 × 10 × 19.	3 (in.) / 178 × 256 × 491 (mm.)
Weight:	56 lbs. / 25.40 kg.

Ordering Information:

Configuration Examples:

ICE5200-TR-30-406-1-RG12-OP5045-PP4136-APY2020-AAY-B124-GDY-T1-OB2-FR3-PD1 ICE5200-TR-225-406-5-RG9-OP5045-PP4136-APN-AAY-B46N-GDY-T1-OB2-FR3-PD2

Note:

This tool is used to specify the unique product configuration required for your application. A part number will be generated by Pole/Zero based on this product configuration.

Electronic Warfare / Communications Integration

EW compatibility requires high power tolerance on Tx and high dynamic range on-channel mitigation solutions for Rx.

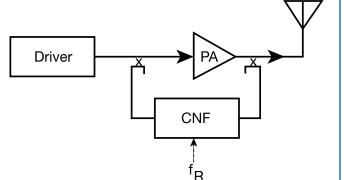
Tx: High Power Notch Filters

Rx: High Dynamic Range Cancellation Technology

Maxi/4R Notch High power post PA filtering opens channels in your system

Multichannel Interference Canceller

Protects your receiver from local emitters – compatible with frequency hopping applications!


The **MAXI/4R NOTCH** contains 4 "poles" of filtering to provide additional rejection at the tuned frequency of the notch when compared to our standard MAXI-POLE[®] Notches. The unit has been designed for applications in UHF receiver front ends (nearby transmitter carrier rejection) and/or transmitter back ends (broadband noise rejection at the frequency of a nearby receiver). For interface and mechanical outline, please refer to the bandpass MAXI/4R.

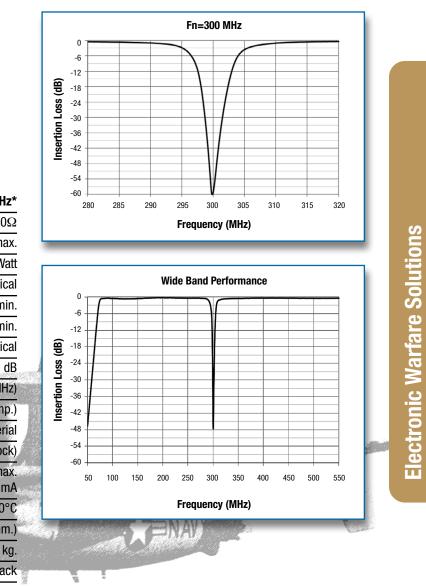
MAXI/4R NOTCH SERIES

Specifications:

Frequency Coverage:	225 to 400 MHz
Input/Output Impedance:	50
Passband Input/Output VSWR:	2:1 ma
Notch RF Power Handling:	1 Wa
Passband RF Power Handling:	50 Watt @ FN \pm 20 MHz typic
Notch Depth:	35 dB mi
Notch Width:	FN ± 300 KHz mi
3 dB Bandwidth:	10 MHz typic
Passband IL:	< 1 0
Passband IP3:	+50 dBm (10/20 MH
Center Frequency Drift:	(internal temp. comp
Tuning Control:	9 bit seri
Tuning Speed:	40 µS (1 MHz cloc
DC Power Consumption (Static):	+5 VDC @ 1.5 A ma +100 VDC @ 2 m
Operating Temperature Range:	-40°C to +70°
Size: 3.1 × 3.5 × 7.	0 (in.) / 79.4 × 88.9 × 177.8 (mm
Weight:	56 oz. / 1588 g / 1.6 k
RF Connection:	SMA jac

* Consult factory for additional ranges.

Cosite Notch Filter Development Low loss parallel solution easily integrates into your EW system


Referenceless Canceller Attacks off board emitters for your ISR applications!

Pinout & Ratings:

PIN #	Reference Designator	Description	Maximum Ratings
1	SD0	Serial Data Out	-0.5 to (V _{CC} + 0.5) V
2-6	N/C	No Connect (1)	—
7, 9, 11, 12	GND	Digital/RF Ground	-
8	Vcc	+5 V Power Supply Input ±10%	-0.5 to +6 V
10	V _{BB}	High Bias +100 V Supply Input	0 to +125 V
13	STB	Strobe	
14	SCLK	Serial Clock	-0.5 to (V _{CC} + 0.5) V
15	SDI	Serial Data In	

Note(s): 1 Leave pins disconnected for unit to function properly.

Performance:

85

Pole/Zero's MULTICHANNEL INTERFERENCE CANCELLER (MIC)

system is a five channel VHF/UHF Cosite Interference Mitigation System (CIMS) designed to be installed between receivers and antennas with reference signals derived from coupling from offending, cosite emitters. The equipment significantly reduces the undesired RF signals from each associated emitter in order to mitigate against interference to the associated receivers. This is accomplished by injection of accurately scaled anti-phase image of the reference (interfering) signal.

The unit contains five channels, each of which can be selected to cover 30-88 MHz, 116-174 MHz or 225-400 MHz.

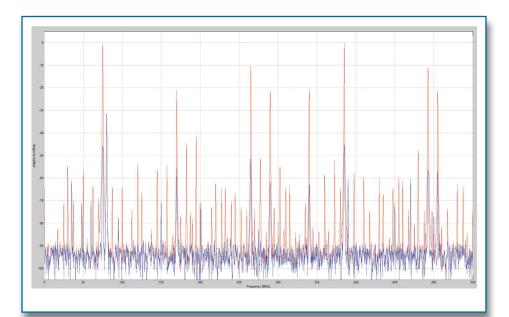
The canceller detects frequency changes automatically and the revised interference is cancelled – even with frequency hopping signals. Please contact your sales representative at 513-870-9060 for further details.

MULTICHANNEL INTERFERENCE CANCELLER

Specifications:

86

Part Number:	Multichannel Interference Canceller
Operation:	Five channels of VHF/UHF cancellation for undesired signals
Frequency Coverage:	30 to 88 MHz (VHFL) 108 to 174 MHz (VHFH) 225 to 400 MHz (UHF)
Receive IL:	5 dB
Interference Null Depth:	45 dB (Typical)
Operating Temperature Range:	-40°C to +55°C
Size:	3U 19 (in.) rack mounting
Weight:	19 lbs. / 8.6 kg.


The ICE2004 is an 8-channel RF interference canceller system that achieves 40 dB of attenuation without the need for cumbersome reference signals from local transmitters. It is a simple two-port RF assembly that covers the 30 to 512 MHz frequency range. The ICE2004 unit is placed directly between the receiver and its antenna. The **ICE2004** enables the reception of low-level RF signals in the presence of up to 8 strong interferers as a result of its inherent low loss path for all non-cancelled signals.

The ICE2004 provides fast canceller acquisition and is compatible with SINCGARS and Have Quick hopping waveforms. The canceller system is also designed for minimal harmonics and spurious and is MIL-STD-461F compliant. The power is MIL-STD-704F compatible. The unit will mount with standard military trays.

The ICE2004 can auto-tune to on or off board cosite emitters and also support radio tuning. The canceller system supports IP addressable Ethernet for Built-In-Test (BIT) and system monitoring.

Cost-effective modifications are available on the ICE2004. Please contact your sales representative at 513-870-9060 for further details.

Performance:

receiver. The remaining desired signals are now readily discernible and receivable as a result of improved sensitivity in your collection/receiver system.

Referenceless Canceller

Part Number:	ICE2004-R-30-512
Operation:	8-Channel RF Interference Canceller
Frequency Coverage:	30 to 512 MHz
Insertion Loss:	2 dB
Harmonics (Typical):	-70 dBc
Spurious Signals:	-111 dBm
Tuning Speed:	200 μS SINCGARS & Have Quick compatible
Power: 1	15 VAC / 400 Hz Single Phase, 450 W
Operating Temperature Ran	ge: -15° to +55°C
Interference Suppression:	40 dB
Input Amplitude Range:	-40 to +10 dBm
Interfaces:	Ethernet, ARC-210, ARC-231
Size: 10.1 × 10.7 ×	12.6 (in.) / 256.5 × 272 × 320 (mm.)
Weight:	40 lbs. / 18 kg.

There are eight (8) large interfering signals in RED that are now attenuated by at least 40 dB in **BLUE** in this receive spectrum, which simultaneously reduces associated products in the

Pole/Zero offers an integrated AIS Splitter/Receiver system in a rugged flange mount or DZUS chassis. The splitter taps off a path from an existing transceiver, auto-blanks the secondary path during primary high-power transmissions (fast attack, slow decay), and provides high selectivity bandpass filtering for receiver protection and interference mitigation. This Splitter/ **Receiver** enables maritime Automatic Identification System (AIS) monitoring from an existing VHF antenna path. In addition, an onboard converter provides RS-422 balanced outputs from unbalanced RS-232 inputs. Includes mounting accommodations for Smart Radio, Shine Micro and Protec receivers (wiring harnesses available).

This Splitter/Receiver supports frequency hopping or single channel tactical communications: SDR. test/measurement. and other applications needing multiple receive outputs and high power handling. Potential installations include avionics, UAVs, ground systems and vehicles, as well as shipboard or lab environments.

In addition to the AIS application, this splitter design can be tailored for other applications such as adding a Guard path to an existing antenna.

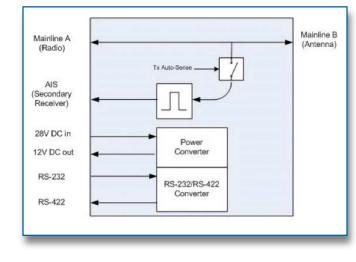
Block Diagram:

AIS Splitter

Specifications:

Part Number:	218000
Frequency Coverage:	30 to 512 MHz
Input/Output Impedance:	50Ω
VSWR:	1.5:1 typical
Mainline Insertion Loss, Isolated:	<0.5 dB
Mainline Insertion Loss, Shared R	x: <1.0 dB
Transmit RF Power Handling:	100 W
Secondary Receive Frequency (1):	156.025 to 162.025 MHz
Secondary Receive Gain:	8 dB typical
Secondary Receive NF (w/ Split Lo	oss): 14 dB typical
Secondary Receive Selectivity:	-65 dBc @ ±10 MHz
Transmitter-Secondary Isolation (2	2): -50 dB
DC Input Power:	28 VDC, <250 mA
DC Output Power:	12 VDC, <250 mA
Temperature Range:	-40°C to +55°C
Size (excluding connectors) (3):	$5.0 \times 7.5 \times 1.2$ (in.) $65.405 \times 146.05 \times 215.392$ (mm.)
Weight:	Approximately 24 oz. / .68 kg.
Weight:	

1. Other secondary frequencies are available upon request Note(s) 2. The secondary path is blanked when the transmitter frequency is close enough to cause non-linear effects.


> 3. DZUS package also available including mounting provision for AIS receiver.

₩-4

 \odot

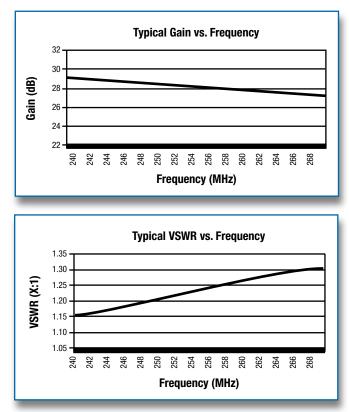
00

Mechanical Outline:

KIAIN LINE B KIAIN PWR / MOUNTIN PROVISIC PROTEC SA 161 SR 162 SR 162 BLACK R 162 (0 0 0 0 00 0 0 0

Pole/Zero® designs and manufactures low noise amplifiers (LNAs) for applications throughout the RF spectrum, from HF to above 1 GHz. These LNAs are utilized extensively as additional building blocks within our Integrated Cosite Equipment (ICE). They are also available as individual elements to support your RF system. The information on this page provides insight into our LNA capabilities. Please call the factory with your specific needs.

SATCOM LNA


Specifications:

Part Number:	138750
Frequency coverage:	243 to 270 MHz
Gain:	20.5 ± 1.5 dB
Noise Figure:	2.0 dB max.
VSWR:	1.35:1 max.
OIP3:	+50 dBm (two tone test)
RF Connectors:	RF In: SMA Female (J1) RF Out: SMA Female (J2)
DC Power Connector:	9-pin Male D-subminiature (P1) (P1 pin1 GND, P1 pin5 +24 VDC ± 5%)

Note: P1 includes Amp locking posts

Typical Performance:

The plots below are provided in order to demonstrate typical performance available from the Low Noise Amplifier (LNA) (illustrated performance is typical, not guaranteed).

Low Noise/High Dynamic Range Amplifiers

The SATCOM LIMITER AMPLIFIER provides exceptional receive sensitivity and system overload protection in the presence of large interfering signals. Operating over the 243 to 270 MHz SATCOM receive band, the Limiter/Amp provides less than 1.8 dB noise figure, greater than 14 dB return loss, 19.5 ± 1 dB gain and 48 dBm OIP3, while limiting output power under extreme conditions to +35 dBm. Various frequency ranges and limiting levels are also available as a factory set option.

SATCOM LIMITER AMPLIFIER

Specifications:

Part Number:	138900
Frequency Coverage:	243 to 270 MH
Gain:	19.5 ± 1 dE
Noise Figure:	1.8 dE
RF Output Power Limiting:	< 35 dBn (< 45 dBm for initial 20 us
Input/Output Impedance:	50 S
Modulation Types:	FM, FSK, PSł
DC Power:	+28 VDC @ 1800 mA max
Operating Temperature Range:	0°C to +50°C
RF Connectors:	RF In: TNC Female (J1) RF Out: N Female (J2)
DC Power Connector:	M38999/42WB99PN (J3 (7-pin Circular)

RF Distribution

Note Flange mount shown

Information/Quote Requests: support@polezero.com

The ICELT1[™] is an integrated Low Noise Amplifier (LNA) and Triplexer. When paired with an Airborne Radio Terminal and Pole/Zero's ICE5200 Cosite Filter/Amplifier, ICELT1's frequency band multiplexing and high dynamic range low noise amplification provides a means to operate UHF SATCOM including MUOS - while in the presence of strong RF Interference.

ICELT1[™]

Preliminary Specifications:

Group Delay Variation (Max.):

Peak RF Input Power (Nom.):

Operating Temperature Range:

Power Dissipation (Full Duplex) (Max.):

Supply Voltage (Nom.):

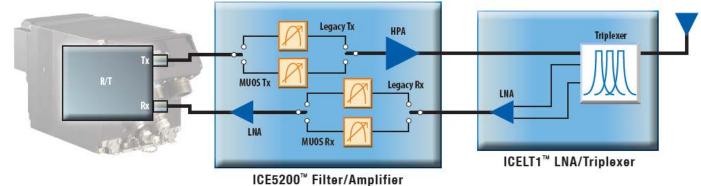
Size:

Weight:

Part Number:	ICE	ELT1-243-380
Operation:	Full dup	lex (SATCOM)
	Hal	f duplex (LOS)
	Low Noise Amp	lifier/Triplexer
Frequency Coverage:		
	243 to 270 MHz (Dedicated	d SATCOM Rx)
	291 to 318 MHz (Dedicate	d SATCOM Tx
	300 to 320 MHz (MU0	S SATCOM Tx
	360 to 380 MHz (MUOS	S SATCOM Rx)
	360 to 380 MHz (MU09	s satcom Rx)
Selectivity (Min.):	360 to 380 MHz (MU09	
	360 to 380 MHz (MU09	-70 dE
Return Loss (Min.):	360 to 380 MHz (MU09	-70 dE 10 dE
Return Loss (Min.): Insertion Loss (Nom.:	360 to 380 MHz (MU09	-70 dE 10 dE 1.3 dE
Return Loss (Min.): Insertion Loss (Nom.: Receive Gain (Nom.):		-70 dB 10 dB 1.3 dB 15 dB
Selectivity (Min.): Return Loss (Min.): Insertion Loss (Nom.: Receive Gain (Nom.): Receive Noise Figure (Input Gain Compressio	(Max.):	S SATCOM Rx) -70 dB 10 dB 1.3 dB 15 dB 4 dB +10 dBm

5 ns

200 W +28 VDC

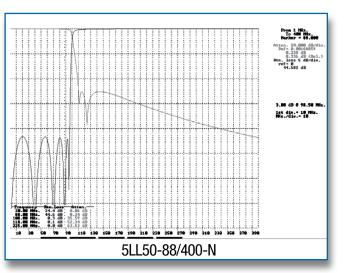

95 W

-20 to +55 °C

15 pounds / 5.4 kg

11 x 8.5 x 3.5 (in.) / 279 x 261 x 89 (mm.)

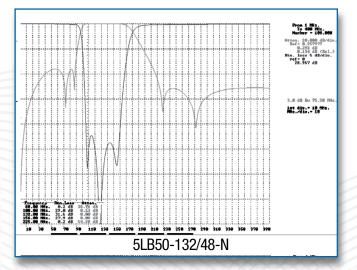
ICE MUOS Suite Block Diagram:


Low Noise Amplifier / Triplexer

Specifications:

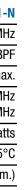
Part Number:	5LL50-88/400-N
Filter Passband:	30 to 88 MHz
Filter Form:	LPF
Passband Loss:	.5 dB max.
Rejection:	30 dB @ 108 MHz
	40 dB @ 118 to 174 MHz
	40 dB @ 225 to 400 MHz
Power Handling:	100 Watts
Operating Temperature Range:	-40°C to +85°C
Size: $4.50 \times 1.25 \times 1.0$ (in.) /	114.3 × 31.75 × 25.4 (mm.)

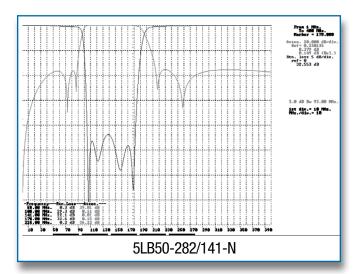
Performance:

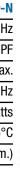

92

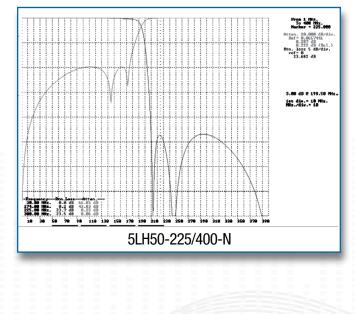
Specifications:

Part Numb	er:	5LB50-282/141-
Filter Passt	oand:	108 to 174 MH
Filter Form	:	BP
Passband L	_0SS:	.5 dB max
Rejection:		30 dB @ 30 to 88 MH
		30 dB @ 225 to 400 MH
Power Han	dling:	100 Watt
Operating 1	Temperature Range:	-40°C to +85°
Size:	4.50 × 1.25 × 1.	0 (in.) / 114.3 × 31.75 × 25.4 (mm


Part Number:	5LB50-132/48-N
Filter Passband:	108 to 156 MHz
Filter Form:	BPF
Passband Loss:	.5 dB max.
Rejection:	30 dB @ 30 to 88 MHz 30 dB @ 225 to 400 MHz
Power Handling:	100 Watts
Operating Temperature Range:	-40°C to +85°C
Size: $4.50 \times 1.25 \times 1.0$ (in.) /	/ 114.3 × 31.75 × 25.4 (mm.)




Part Number:		5LH50-225/400-I
Filter Passband:		225 to 400 MH
Filter Form:		HP
Passband Loss:		.5 dB max
Rejection:		30 dB @ 30 to 174 MH
Power Handling:	:	100 Watt
Operating Temp	erature Range:	-40°C to +85°
Size:	1.5 × 1.0 × 1.0 (in.)	/ 38.1 \times 25.4 \times 25.4 (mm
MIL-STD 810 vil	bration and shock	


Cross Band Cosite Filtering

Performance:

RF Distribution

The TMC-100/160 are TUNABLE MULTICOUPLERS enabling up to four transceivers to operate simultaneously in transmission and reception mode using a common antenna. The four digitally controlled bandpass filters within the **MULTICOUPLERS** cover the VHF or UHF communication band. Each filter is a three pole design to provide high selectivity with a nominal 3 dB bandwidth of 0.7 (VHF), 0.3 (UHF), 1.0 or 2.0%. Each filter is controlled remotely through an independent digital interface. When a frequency command is received control circuitry drives a stepper motor to properly position the filter shaft. The **MULTICOUPLERS** may be optimized for custom interface, mechanical and performance requirements.

Part Number:		TMC-100/160					
Operation: Half	duplex, transmit & receive	plex, transmit & receive, four-port multicoupler					
Frequency Coverage:		100 to 160 MHz					
Bandwidth:	0.7, 1.0 or 2.0	0.7, 1.0 or 2.0% of Fc, nominal, -3 dB					
Insertion Loss:	2.5, 2.0 or 1.5 dB, respectively, max. @ min. Co-channel separation						
Co-channel Separatio	on for 50 dB isolation:	+ 3.0, 4.0 or 8.0%, respectively, min.					
Power Handling:	60 Watts avg., 16	60 Watts pk. per channel					
Minimum Channel Se	eparation:	4 MHz					
Shape Factor (30 dB	/ 3 dB):	3.1 nominal					
Ultimate Isolation:		80 dB, min.					
Tuning Speed:		10 sec. max.					
Power:		24 VDC Input					
Standby:		24 Watts					
Peak:		200 Watts					
Weight:	145	lbs. nominal / 65.78 kg					
Operating Temperatu	re Range:	0°C to +50°C					
Size:	$20 \times 20 \times 25$ (in.) /	508 × 508 × 635 (mm.)					

Part Number:	TMC-225/400						
Operation: Half duplex, t	uplex, transmit & receive, four-port multicoupler						
Frequency Coverage:	225 to 400 MHz						
Bandwidth:	0.3, 1.0 or 2.0% of Fc, nominal, -3 dB						
Insertion Loss:	2.5, 2.0 or 1.5 dB, respectively, max. @ min. Co-channel separation						
Co-channel Separation for 50	dB isolation: + 2.0, 4.0 or 8.0%, respectively, min.						
Power Handling:	100 Watts pk. per channel						
Min. Channel Separation:	5 MHz						
Shape Factor (30 dB / 3 dB):	3.5:1 nominal, 4.5:1 max.						
Ultimate Isolation:	80 dB, min.						
Tuning Speed:	10 sec. max.						
Power:	24 VDC Input						
Standby:	24 Watts						
Peak:	200 Watts						
Weight:	145 lbs. nominal / 65.78 kg.						
Operating Temperature Range	: 0°C to +50°C						
Size: 20 ×	: 20 × 25 (in.) / 508 × 508 × 635 (mm.)						

ATTENUATION – The reduction in amplitude, measured in dB, of a signal passing through a dissipative network or other medium.

BANDWIDTH – The width in frequency of a filter's response, typically measured between the 3 dB points.

BANDPASS FILTER – A filter that passes one band of frequencies, while rejecting both higher and lower frequencies.

BUTTERWORTH FILTER – A filter with a maximally flat (minimum ripple) amplitude response in the passband.

CENTER FREQUENCY (f₀) – A measure of the central frequency, between the upper and lower cutoff frequencies. It can be defined as the either the arithmetic mean or geometric mean.

> Arithmetically: $f_0 = (f_1 + f_2) / 2$ Geometrically: $f_0 = \sqrt{(f_1 \times f_2)}$

COSITE INTERFERENCE – Interference, typically self-generated, in communication systems caused by transceivers located within close proximity to one another without appropriate isolation.

DECIBEL – A logarithmic unit of measurement expressing signal magnitude relative to a specified or implied reference level.

FALL TIME – The time required for a signal to change from a specified high value to a specified low value, typically defined as 90% and 10% of the steady state value.

FILTER Q – The Q Factor (Quality Factor) is a dimensionless parameter giving an indication of the 'quality' of a filter.

 $Q = f_0 / 3 dB$ bandwidth

Glossary

INSERTION LOSS – The decrease in transmitted signal power resulting from the insertion of a device. It is usually expressed relative to the signal power delivered to that same part before insertion, and is usually expressed in decibels (dB).

NOTCH FILTER – A filter that rejects one band of frequencies. while passing both higher and lower frequencies. Also known as a band reject filter.

PASSBAND – The range of frequencies that can be passed through a filter, bounded by limits often specified as the half-power points (i.e. 3 dB below the nominal).

PERCENT BANDWIDTH – The width of a filter's response between the 3 dB points, based on a percentage of the center frequency.

RESPONSE – A description of how a filter reacts to input signals versus frequency, and is defined as the ratio of the input signal compared to the output signal.

RISE TIME – The time required for a signal to change from a specified low value to a specified high value, typically defined as 10% and 90% of the steady state value.

SELECTIVITY – A measure of the attenuation provided at frequencies removed from the center frequency relative to the center frequency response.

SHAPE FACTOR – A dimensionless parameter giving an indication of the amount of selectivity provided by a given filter. Typically calculated as the ratio between the 30 dB bandwidth and 3 dB bandwidth.

Decibels-Volts-Watts Conversion Table, 50-ohm System Terminated											
dBm	v	Ро	dBm	mV	Po	dBm	μV	Ро	dBm	nV	Po
+53	100.0	200 W									
+50	70.7	100 W	0	225	1.0 mW	-50	710	.01 µW	-100	2250	.1 pW
+49	64.0	80 W	-1	200	.80 mW	-51	640		-101	2000	· ·
+48	58.0	64 W	-2	180	.64 mW	-52	570		-102	1800	
+47	50.0	50 W	-3	160	.50 mW	-53	500		-103	1600	
+46	44.5	40 W	-4	141	.40 mW	-54	450		-104	1410	
+45	40.0	32 W	-5	125	.32 mW	-55	400		-105	1270	<u> </u>
+44	35.4	25 W	-6	115	.25 mW	-56	355		-106	1180	
+44	32.0	20 W	-7	100	.20 mW	-57	320		-107	1000	
+43	28.0	16 W	-8	90.0	.16 mW	-58	280		-108	900	
			-8 -9								┼───
+41	26.2	12.5 W		80.0	.125 mW	-59	251	001W	-109	800	01 m
+40	22.5	10 W	-10	71.0	.10 mW	-60	225	.001 µW	-110	710	.01 p\
+39	20.0	8 W	-11	64.0		-61	200		-111	640	
+38	18.0	6.4 W	-12	58.0		-62	180		-112	580	
+37	16.0	5 W	-13	50.0		-63	160		-113	500	──
+36	14.1	4 W	-14	44.5		-64	141		-114	450	──
+35	12.5	3.2 W	-15	40.0		-65	128		-115	400	<u> </u>
+34	11.5	2.5 W	-16	35.5		-66	115		-116	355	
+33	10.0	2 W	-17	31.5		-67	100		-117	320	<u> </u>
+32	9.0	1.6 W	-18	28.5		-68	90		-118	285	
+31	8.0	1.25 W	-19	25.1		-69	80		-119	251	
+30	7.10	1.0 W	-20	22.5	.01 mW	-70	71	.1 nW	-120	225	.001 p
+29	6.40	800 mW	-21	20.0		-71	65		-121	200	
+28	5.80	640 mW	-22	17.9		-72	58		-122	180	
+27	5.00	500 mW	-23	15.9		-73	50		-123	160	
+26	4.45	400 mW	-24	14.1		-74	45		-124	141	
+25	4.00	320 mW	-25	12.8		-75	40		-125	128	
+24	3.55	250 mW	-26	11.5		-76	35		-126	117	
+23	3.20	200 mW	-27	10.0		-77	32		-127	100	
+22	2.80	160 mW	-28	8.9		-78	29		-128	90	ĺ
+21	2.52	125 mW	-29	8.0		-79	25		-129	80	i
+20	2.25	100 mW	-30	7.1	.001 mW	-80	22.5	.01 nW	-130	71	.1 fW
+19	2.00	80 mW	-31	6.25		-81	20.0		-131	61	1
+18	1.80	64 mW	-32	5.8		-82	18.0		-132	58	<u> </u>
+17	1.60	50 mW	-33	5.0		-83	16.0		-133	50	1
+16	1.41	40 mW	-34	4.5		-84	11.1		-134	45	<u> </u>
+15	1.25	32 mW	-35	4.0		-85	12.9		-135	40	<u> </u>
+14	1.15	25 mW	-36	3.5		-86	11.5		-136	35	├
+14	1.00	20 mW	-37	3.2		-87	10.0		-137	33	
+13	.90	16 mW	-37	2.85		-88	9.0		-137	29	
+12	.90	12.5 mW	-38	2.65		-89	9.0 8.0		-138	29	├
					4.04/			001 pW			01.0
+10	.71	10 mW	-40	2.25	.1 µW	-90	7.1	.001 nW	-140	23	.01 fV
+9	.64	8 mW	-41	2.0		-91	6.1				──
+8	.58	6.4 mW	-42	1.8		-92	5.75				<u> </u>
+7	.500	5 mW	-43	1.6		-93	5.0				<u> </u>
+6	.445	4 mW	-44	1.4		-94	4.5				
+5	.400	3.2 mW	-45	1.25	ļ	-95	4.0			ļ	<u> </u>
+4	.355	2.5 mW	-46	1.18		-96	3.51				<u> </u>
+3	.320	2.0 mW	-47	1.00		-97	3.2				<u> </u>
+2	.280	1.6 mW	-48	.90		-98	2.9				
+1	.252	1.25 mW	-49	.80	1	-99	2.51				1

The Effect of VSWR on Transmitted Power											
VSWR	Return Loss (dB)	Trans. Loss (dB)	Volt Refl. Coeff.	Power Trans. (%)	Power Refl. (%)	VSWR	Return Loss (dB)	Trans. Loss (dB)	Volt Refl. Coeff.	Power Trans. (%)	Power Refl. (%)
1.00	8	.000	.00	100.0	.0	1.60	12.7	.238	.23	94.7	5.3
1.01	46.1	.000	.00	100.0	.0	1.62	12.5	.250	.24	94.4	5.6
1.02	40.1	.000	.01	100.0	.0	1.64	12.3	.263	.24	94.1	5.9
1.03	36.6	.001	.01	100.0	.0	1.66	12.1	.276	.25	93.8	6.2
1.04	34.2	.002	.02	100.0	.0	1.68	11.9	.289	.25	93.6	6.4
1.05	32.3	.003	.02	99.9	.1	1.70	11.7	.302	.26	93.3	6.7
1.06	30.4	.004	.03	99.9	.1	1.72	11.5	.315	.26	93.0	7.0
1.07	29.4	.005	.03	99.9	.1	1.74	11.4	.329	.27	92.7	7.3
1.08	28.3	.006	.04	99.9	.1	1.76	11.2	.342	.28	92.4	7.6
1.09	27.3	.008	.04	99.8	.2	1.78	11.0	.356	.28	92.1	7.9
1.10	26.4	.010	.05	99.8	.2	1.80	10.9	.370	.29	91.8	8.2
1.11	25.7	.012	.05	99.7	.3	1.82	10.7	.384	.29	91.5	8.5
1.12	24.9	.014	.06	99.7	.3	1.84	10.6	.398	.30	91.3	8.7
1.13	24.3	.016	.06	99.6	.4	1.86	10.4	.412	.30	91.0	9.0
1.14	23.7	.019	.07	99.6	.4	1.88	10.3	.426	.31	90.7	9.3
1.15	23.1	.021	.07	99.5	.5	1.90	10.2	.440	.31	90.4	9.6
1.16	22.6	.024	.07	99.5	.5	1.92	10.0	.454	.32	90.1	9.9
1.17	22.1	.027	.08	99.4	.6	1.94	9.9	.468	.32	89.8	10.2
1.18	21.7	.030	.08	99.3	.7	1.96	9.8	.483	.32	89.5	10.5
1.19	21.2	.033	.09	99.2	.8	1.98	9.7	.497	.33	89.2	10.8
1.20	20.8	.036	.09	99.2	.8	2.00	9.5	.512	.33	88.9	11.1
1.21	20.4	.039	.10	99.1	.9	2.50	7.4	.881	.43	81.6	18.4
1.22	20.1	.043	.10	99.0	1.0	3.00	6.0	1.249	.50	75.0	25.0
1.23	19.7	.046	.10	98.9	1.1	3.50	5.1	1.603	.56	69.1	30.9
1.24	19.4	.050	.11	98.9	1.1	4.00	4.4	1.938	.60	64.0	36.0
						4.50	3.9	2.255	.64	59.5	40.5
1.25	19.1	.054	.11	98.8	1.2	5.00	3.5	2.553	.67	55.6	44.4
1.26	18.8	.058	.12	98.7	1.3	5.50	3.2	2.834	.69	52.1	47.9
1.27	18.5	.062	.12	98.6	1.4	6.00	2.9	3.100	.71	49.0	51.0
1.28	18.2	.066	.12	98.5	1.5	6.50	2.7	3.351	.73	46.2	53.8
1.29	17.9	.070	.13	98.4	1.6	7.00	2.5	3.590	.75	43.7	56.2
						7.50	2.3	3.817	.76	41.5	58.5
1.30	17.7	.075	.13	98.3	1.7	8.00	2.2	4.033	78	39.5	60.5
1.32	17.2	.083	.14	98.1	1.9	8.50	2.1	4.240	.79	37.7	62.3
1.34	16.8	.093	.15	97.9	2.1	9.00	1.9	4.437	.80	36.0	64.0
1.36	16.3	.102	.15	97.7	2.3	9.50	1.8	4.626	.81	34.5	65.5
1.38	15.9	.112	.16	97.5	2.5	10.00	1.7	4.807	.82	33.1	66.9
	İ			İ	L	11.00	1.6	5.149	.83	30.6	69.4
1.40	15.6	.122	.17	97.2	2.8	12.00	1.5	5.466	.85	28.4	71.6
1.42	15.2	.133	.17	97.0	3.0	13.00	1.3	5.762	.86	26.5	73.5
1.44	14.9	.144	.18	96.7	3.3	14.00	1.2	6.042	.87	24.9	75.1
1.46	14.6	.155	.19	96.5	3.5	15.00	1.2	6.301	.88	23.4	76.6
1.48	14.3	.166	.19	96.3	3.7	16.00	1.1	6.547	.88	22.1	77.9
						17.00	1.0	6.780	.89	21.0	79.0
1.50	14.0	.177	.20	96.0	4.0	18.00	1.0	7.002	.89	19.9	80.1
1.52	13.7	.189	.20	95.7	4.3	19.00	0.9	7.212	.90	19.0	81.0
1.54	13.4	.201	.21	95.5	4.5	20.00	0.9	7.413	.90	18.1	81.9
1.54	13.4	.213	.21	95.2	4.8	25.00	0.7	8.299	.92	14.8	85.2
1.58	13.0	.225	.22	94.9	5.1	30.00	0.6	9.035	.94	12.5	87.5

Reference Material

Fraction	Decimal	Millimeter	Fraction	Decimal	Millimeter
1/64	.015625	0.397	33/64	.515625	13.097
1/32	.03125	0.794	17/32	.53125	13.494
3/64	.046875	1.191	35/64	.546875	13.891
1/16	.0625	1.588	9/16	.5625	14.288
5/64	.078125	1.984	37/64	.578125	14.684
3/32	.09375	2.381	19/32	.59375	15.081
7/64	.109375	2.778	39/64	.609375	15.478
1/8	.125	3.175	5/8	.625	15.875
9/64	.140625	3.572	41/64	.640625	16.272
5/32	.15625	3.969	21/32	.65625	16.669
11/64	.171875	4.366	43/64	.671875	17.066
3/16	.1875	4.762	11/16	.6875	17.462
13/64	.203125	5.159	45/64	.703125	17.859
7/32	.21875	5.556	23/32	.71875	18.256
15/64	.234375	5.953	47/64	.734375	18.653
1/4	.250	6.350	3/4	.750	19.050
17/64	.265625	6.747	49/64	.765625	19.447
9/32	.28125	7.144	25/32	.78125	19.844
19/64	.296875	7.541	51/64	.796875	20.241
5/16	.3125	7.938	13/16	.8125	20.638
21/64	.328125	8.334	53/64	.828125	21.034
11/32	.34375	8.731	27/32	.84375	21.431
23/64	.359375	9.128	55/64	.859375	21.828
3/8	.375	9.525	7/8	.875	22.225
25/64	.390625	9.921	57/64	.890625	22.622
13/32	.40625	10.319	29/32	.90625	23.019
27/64	.421875	10.716	59/64	.921875	23.416
7/16	.4375	11.112	15/16	.9375	23.812
29/64	.453125	11.509	61/64	.953125	24.209
15/32	.46875	11.906	31/32	.96875	24.606
31/64	.484375	12.303	63/64	.984375	25.003
1/2	.500	12.700	1	1.00	25.400

98

Length-Mass Conversion Table								
	1		2		3			
How to Use this Table:	Centimeters	×	0.3937	=	Inches			
	Millimeters	×	0.03937	=	Inches			
Find the term that you are	Meters	×	39.37	=	Inches			
currently using in Column 1.	Feet	×	12	=	Inches			
	Yards	×	36	=	Inches			
Multiply by the conversion factor	Inches	×	25.4	=	Millimeters			
	Inches	×	25,400	=	Microns			
in column 2 to obtain the	Meters	×	3.281	=	Feet			
equivalent in column 3.	Feet	×	0.3048	=	Meters			
	Meters	×	1.093	=	Yards			
If you want to convert column 3	Yards	×	0.9144	=	Meters			
back to column 1, reverse the	Kilometers	×	0.621	=	Miles			
process by dividing by the	Mile	×	1.609	=	Kilometers			
process by dividing by the	Mils	×	0.0254	=	Millimeters			
conversion factor in column 2.	Microns	×	0.03937	=	Mils			
	Grams	×	0.03527	=	Ounces			
	Grams	×	0.0022	=	Pounds			
	Pounds/Inch	×	17.512685	=	Newtons/100 Millimeters			
	Ounces/Inch	×	10.94543	=	Newtons/Meter			

Temperature Conversion

- To convert °C to °F, multiply by 1.8 and add 32 (ie. $100^{\circ}C \times 1.8 + 32 = 212^{\circ}F$)
- To convert °F to °C, subtract 32 and divide by 1.8 (ie. $212^{\circ}F$ $32 / 1.8 = 100^{\circ}C$)

U.S. Representatives: (Listed from East to West Coast)

MMS, Inc.

Upstate New York & New England

238 Littleton Rd., Suite 207 Westford, MA 01886 Tel: 978.392.0110 Fax: 978.392.0220 Email: info@mmstechrep.com Web: www.mmstechrep.com

Tekmar Sales, Inc.

New York City (vicinity). New Jersey, Long Island & E. Pennsylvania 10 Saddle Brook Court Dix Hills, NY 11746 Tel: 631.254.9026 Fax: 631.254.9026 Email: joanne.littera@tekmarsales.com Web: www.tekmarsales.com

MHz Marketing, Inc.

Maryland, Virginia, W. Virginia & DC

3060 Maryland Rt. 97, Suite 178 Glenwood, MD 21738 Tel: 410.489.9255 Fax: 410.489.9117 Email: insidesales@mhzmarketing.com Web: www.mhzmarketing.com

SPARTECH-South, Inc.

Alabama, Florida, Georgia, N. Carolina, S. Carolina, Tennessee & Mississippi

2115 Palm Bay Road NE, Suite 4 Palm Bay, Florida 32905 Tel: 321.727.8045 Fax: 321.543.1841 Email: scott@spartech-south.com Web: www.spartech-south.com

Micro Sales Indiana. Kentucky. Michigan. Ohio & Western Pennsylvania 6724 Perimeter Loop, #245 Dublin, OH 43017 Tel: 614.792.9117

Fax: 614.792.9938 Email: info@micro-sales.com Web: www.micro-sales.com

KJS Marketing Illinois, Missouri, Iowa, Minnesota, Kansas, Nebraska, N. Dakota, S. Dakota & Wisconsin 3008 Sutton Blvd. Maplewood, MO 63143 Tel: 314.669.9800

Fax: 314.669.9801 Email: support@kjsmarketing.com Web: www.kjsmarketing.com

Cain-Pollock

Utah, Wyoming, Colorado

1221 E. 470 S. Pleasant Grove, UT 84062 Tel: 801.380.0918 Fax: 801.443.4411 Email: will@a-dtech.com

Saguaro Technical Sales Inc. Arizona & New Mexico

4300 North Miller Road. Suite 121 Scottsdale, Arizona 85251 Tel: 480.947.3724 Fax: 480.947.3094 Email: art.diaz@stsi-techsales.com

PMR Technical. LP

Texas, Oklahoma, Arkansas & Louisiana

1431 Greenway Drive, Suite 800 Irving, Texas 75038 Tel: 972.905.1420 Fax: 214.407.8782 Email: admin@pmrtexas.com Web: www.pmrtexas.com

Associated Technical Sales

Southern California 13681 Newport Avenue, Suite 8, #315 Tustin, CA 92780 Tel: 877.ATS.1REP (287-1737) Fax: 714.242.9991 Email: sales@ats1rep.com Web: www.ats1rep.com

NWN. Inc. LP

Northern California & Nevada 1754 Technology Drive, Suite 142 San Jose, CA 95110 Tel: 408.437.2700 Fax: 408.437.2705 Email: sales@nwn-inc.com Web: www.nwn-inc.com

Lionheart Northwest

Washington, Oregon & Idaho

15515 NE 60th Street Redmond, WA 98052 Tel: 425.882.2587 Fax: 425.952.8739 Contact: Leo Smale Email: leosmale@lionheartnw.com Contact: Brad Catlin Email: bradcatlin@lionheartnw.com Web: www.lionheartnw.com

International Representatives: (Listed from West to East)

RFMW UK Ltd.

United Kingdom & Republic of Ireland Marlin Building, 4 Sadler Road Lincoln UK LN6 3RS United Kinadom Tel: +44 (0)1522 686 690 Fax: +44 (0)1522 686 691 Email: sales@rfmw.co.uk Web: www.rfmw.co.uk

Milexia France

France

9, rue des petits-ruisseaux, BP 61 91371 Verrières-le-buisson Cedex FRANCE Tel: +33 (0)1 69 53 80 00 Fax: +33 (0)1 60 11 98 09 Contact: Pascal Gandolfini Email: pascal.gandolfini@milexia.fr

Contact: David Gravoueille Email: david.gravoueille@milexia.fr Web: www.milexia.com

Spantech Microwave Technology S.A.

Spain & Portugal

Aptdo.de correos nº 38 29130 Alhaurín de La Torre Málaga SPAIN Tel: +34-95-241-7024 Fax: +34-95-194-8515 Email: sales@spantech.es Web: www.spantech.es

Heynen BV

Netherlands, Belgium & Luxembourg Netherlands

De Groote Heeze 11 6598 AV Heijen THE NETHERLANDS Contact: Rob Van Osch Tel: (+31) (0) 485.55.09.09 Fax: (+31) (0) 485.55.09.00 Email: rob.vanosch@heynen.nl

Belgium

Contact: Johan De Ceuster Tel: (+32) 11.525.777 Fax: (+32) 47.537.2723 Email: johan.de.ceuster@heynen.be

Telemeter Electronic GmbH Czech Republic. Slovakia. Germany, Austria, Liechtenstein & Switzerland

Czech Republic & Slovakia České Vrbné 2364 370 11 České Budějovice ČESKÁ REPUBLIKA Tel: +420-385-310-637 Fax: +420-385-510-124 Email: info@telemeter.cz Web: www.telemeter.info

Joseph-Gänsler-Straße 10 86609 Donauwörth

GERMANY Tel: +49-906-70693-0 Fax: +49-906-70693-50 Email: info@telemeter.cz

Romanshornerstrasse 117 8280 Kreuzlingen SWITZERLAND Tel: +41 71 699 20 20 Fax: +41 71 699 20 24 Email: info@telemeter.ch

Systemtechnik

٥r P.O. Box 1850, 74008 Heilbronn GERMANY Tel: +49-7131-7810-0 Fax: +49-7131-7810-20 Email: hf-welt@globes.de Web: www.globes.de

Representatives

Germany & Austria

Switzerland & Lichtenstein

GLOBES Elektronik GmbH & Co KG Germany: Rhode + Schwarz, BPS

Berliner Platz 12, 74072 Heilbronn

Note: Limited to Rohde + Schwarz and BPS-Bögl & Partner Systemtechnik

Milexia Italia SPA Italy & Greece Milano Milano via Sardegna, 1 Milano 20146 ITALY Tel: +39-024817900 Fax: +39-024813594t Email: info@milexia.it Web: www.milexia.com Rome Via Jacopo Sannazzaro, 6 Rome 00141 ITALY Contact: Marco Santarelli Tel: +39-0686894323 Fax: +39-068275270 Email: info@milexia.it Web: www.milexia.com

Keras Electronics Poland

ul. Lukasinskiego 7 37-700 Przemysl POLAND Tel: +48 (0) 16 736 21 79 Fax: +48 (0) 16 736 21 75 Email: Joanna@keras.pl Web: www.keras.pl

International Representatives: (Cont.)

Amtele Communication AB Sweden, Denmark, Estonia, Finland, Latvia. Lithuania & Norwav **Denmark & Sweden (South)** Sisiövägen 283 S-436 38 Askim DENMARK Contact: Håkan Nilsson Tel: +46-8-556-466-14 Fax: +46-8-556-466-10 Email: hakan.nilsson@amtele.se Web: www.amtele.se Finland Makituvantie 9

FIN-015 10 Vantaa FINLAND Contact: Tomi Kivilahti Tel: +358-9-727-300-70 Fax: +358-9-727-4010 Email: tomi.kivilahti@amtele.fi Web: www.amtele.se

Norway & Sweden (North) Jägerhornsväg 10 Kungens Kurva, 14175 SWEDEN Contact: Morgan Hjelm Tel: +46-8-556-466-00 Fax: +46-8-556-466-10 Email: morgan@amtele.se Web: www.amtele.se

TMS Elektronik

Turkev

Gümü çü Sk.tam APT. NO: 22/5 34744 ISTANBUL Tel: +90 (216) 3732515 Web: www.tms-elektronik.com

Elina Electronic Engineering Group Ltd.

Israel 25 Ha-Lehi St. Bnei-Brak 51200, Israel Tel:+972-73-2224861 Fax: +972-3-6164951 Web: www.elina.co.il

Elkay International, Inc. USA

230 U.S. Highway 206, Suite 102 Flanders, NJ 07836 USA Contact: Vikas Bajaj Tel: 973.927.8647 Fax: 973.927.5370 Email: vikas@elkayintl.com Web: www.elkavintl.com

Elkay Electromech India Pvt Ltd. India

948 B, 9th Main, Vijaya Bank Layout Bilekahalli Bangalore 560 076 INDIA Contact: Subhash E. Tel: 91-080-4340 9200 Fax: 91-080-4340 9299 Email: elkay@elkayindia.com Web: www.elkayindia.com

Maxmega Electronic, PTE. Ltd.

Singapore, Malaysia & Thailand 63 Hillview Avenue, #09-19,

Lam Soon Industrial Building SINGAPORE Tel: 65 64188065 Web: www.maxmega.com

(Filters Only)

STEP Electronics, Ltd.

Taiwan Taipei 6F, 176 Nanking East Road, Section 2 Taipei Taiwan 10489. R.O.C. Tel: 886 2-25067451 Fax: 886 2-25064436 Email: sparkwang@stepelectronics.com.tw Web: www.stepelectronics.com.tw

(ICE Only)

Vivian & Vincent Int'l. Trading Co., Ltd.

Taiwan **Taipei City**

2F-3, No. 28, Lane 78, Xing-Ai Road, Nei Hu District Taiwan, R.O.C. Tel: +886 2-2792-9980 Fax: +886 2-2792-9336 Email: jchang@vvitcl.com.tw

(Filters Only)

Karmel Technologies, Co., Ltd.

Republic of Korea 2F, 89, Bokjeong-ro, Sujeong-gu Seongnam-si Gyeonggi-do, 13112 SOUTH KOREA Tel: +82-31-778-6171 Fax: +82-31-778-6172 Email: sales@karmeltech.com Web: www.karmeltech.com

(ICE Only)

SM Engineering Corporation Republic of Korea #505 Innoplex, 13 Yangpyung-dong 3ga Yeonadeunapo-au, Seoul, 150-103

Tel: +82 (2) 738-2184 Email: yspark@smengnet Web: www.smeng.net

Shoshin Corporation

Japan Tokyo Suruga Building, 6F 1-7-1 Nihonbashi-Muromachi, Chuo-Ku Tokyo, 103-0022 JAPAN Contact: Masaki Endo Tel: +81-3-3270-5921 Fax: +81-3-3245-0369 Email: mendo@shoshin.co.jp Web: www.shoshin.co.ip

Shoshin Corporation Continued

Nagoya 41-20, Mei-eki, Nakamura-Ku Nagoya, Aichi 450-0002 JAPAN Contact: Masahiro Oguri Email: moguri@ngo.shoshin.co.jp Contact: Mitsunobu Kaneko Email: mkaneko@ngo.shoshin.co.jp Tel: +81-52-581-7291 Fax: +81-52-581-7290

Osaka

2-3-8 Uchihonmachi, Chuo-KU Osaka, 504-0026 JAPAN Contact: Akio Tsumura Tel: +81-6-6946-7751 Fax: +81-6-6946-7760 Email: atsumura@osk.shoshin.co.jp

Alliance Electronics Pty Ltd.

Australia

P.O. Box 8882 Unit 3, 1 Lieber Grove Carrum Downs VIC 3201 Tel: 61-0397708222 Fax: 61-0397708122 Email: sales@allianceelectronics.com.au Web: www.allianceelectronics.com

Telepro, Inc.

Canada Province of Quebec and Maritime Provinces (Nova Scotia, New Brunswick, Newfoundland & Prince Edward Island) 2400 Chemin Lucerne Suite 155 Mont-Royal QC CANADA H3R 2J8 Tel: (514) 667-7061 Cell: (514) 813-4614 Fax: (514) 448-1845 Email: hamo@telepro-inc.com

Telepro, Inc. Continued Ottawa Area, Manitoba, Saskatchewan, Alberta & **British Columbia** 300 March Road, 4th floor Kanata, ON CANADA K2K 2E2 Tel: (613) 257-5306 Cell: (613) 850-2803 Fax: (613) 599-8067 Email: david@telepro-inc.com **Greater Toronto Area & Province** of Ontario (except for Ottawa Area) 5800 Ambler Drive, Suite 210, Office # 71 Mississauga, ON CANADA

L4W 4J4 Tel: (905) 276-2726 Cell: (647) 801-2726 Fax: (905) 272-0286 Email: cliff@telepro-inc.com

Representatives

Enabling Communication and Signal Control

BSC Filters Ltd Dover House, 10-11 Stirling Park, Bleriot Way, Clifton Moor, York, YO30 4WU UK

Dow-Key Microwave 4822 McGrath Street Ventura, CA 93003 USA Phone: +44(0) 1904 694250 Fax: +44(0) 1904 694260 Email: sales@bscfilters.com Web: www.bscfilters.com

Phone: +1 805 650 0260 Fax: +1 805 650 1734 Email: askDK@dowkey.com Web: www.dowkey.com K&L Microwave 2250 Northwood Drive Salisbury, MD 21801 USA

Pole/Zero Corporation 5558 Union Centre Drive West Chester, OH 45069 USA Phone: +1 410 749 2424 Fax: +1 443 260 2268 Email: sales@klmicrowave.com Web: www.klmicrowave.com

Phone: +1 513 870 9060 Fax: +1 513 870 0212 Email: support@polezero.com Web: www.polezero.com

Please visit the MPG web site at **www.dovermpg.com** for additional information.